192 research outputs found

    Makna Hidup Pada Penyandang Disabilitas Daksa Di BBRSBD PROF. DR. Soeharso Surakarta

    Get PDF
    Become the sunatullah every life journey experienced by humans is sometimes pleasant and unpleasant. This as a test for humans aims to see the quality of their human beings. A pleasant experience may not be a problem, but how about unpleasant experiences such as tragic accidents, bomb explosions, and other calamities that result in disability, certain issues become a problem for the victims. This study aims to understand and describe how the meaning of life for people with disabilities and how dynamics get the meaning of life. The research method used is qualitative phononology where data collection is obtained from semi-structured interviews with the selection of informants using purposive sampling. Criteria for informants in this study were persons with physical disabilities due to accidents and willing to be research informants as evidenced by informed consent. The meaning of life to be a person with a disability can be seen from the feeling of being meaningful and happy and trying to improve worship because it is still given life and is grateful for the present life. After becoming a disabled person who initially lacked confidence became more confident, ridiculing, empathizing with others who were worse than himself, honing his potential or abilities and thinking about the future and feeling his life meant. Keywords: Meaning of life, people with disabilities, physical disabilit

    Self-adjustment mechanisms and their application for orthosis design

    Get PDF
    Medical orthoses aim at guiding anatomical joints along their natural trajectories while preventing pathological movements, especially in case of trauma or injuries. The motions that take place between bone surfaces have complex kinematics. These so-called arthrokinematic motions exhibit axes that move both in translation and rotation. Traditionally, orthoses are carefully adjusted and positioned such that their kinematics approximate the arthrokinematic movements as closely as possible in order to protect the joint. Adjustment procedures are typically long and tedious. We suggest in this paper another approach. We propose mechanisms having intrinsic self-aligning properties. They are designed such that their main axis self-adjusts with respect to the joint’s physiological axis during motion. When connected to a limb, their movement becomes homokinetic and they have the property of automatically minimizing internal stresses. The study is performed here in the planar case focusing on the most important component of the arthrokinematic motions of a knee joint

    Malin 1: interacting galaxy pair?

    Full text link
    Malin 1 is a unique, extraordinarily large low surface brightness galaxy. The structure and the origins of the galaxy are poorly understood. The reason for such a situation is an absence of detailed observational data, especially, of high-resolution kinematics. In this Letter we study the stellar kinematics of the inner part (r < 15 kpc) of Malin 1. We present spectroscopic arguments in favour of a small galaxy - Malin 1B - being a companion probably interacting with the main galaxy - Malin 1. This object is clearly seen in many published images of Malin 1 but is not mentioned in any astronomical databases. Malin 1B is located at the projected distance of 14 kpc from the Malin 1's nucleus and has small - 65±\pm16 km/s - relative velocity, which we determined for the first time. We suggest that ongoing interaction with Malin 1B can explain main morphological features of the Malin 1's central region - two-armed spiral structure, a bar, and an external one-armed spiral pattern. We also investigated the large scale environment of Malin 1 and postulate that the galaxy SDSS J123708.91+142253.2 might be responsible for the formation of extended low-surface brightness envelope by means of head-on collision with Malin 1 (in the framework of collision scenario proposed by Mapelli et al. 2008). To test the collisional origins of Malin 1 global structure, more observational data and new numerical models are needed.Comment: 5 pages, 4 figures, accepted for publication in MNRA

    The Role of a Hot Gas Environment on the Evolution of Galaxies

    Full text link
    Most spiral galaxies are found in galaxy groups with low velocity dispersions; most E/S0 galaxies are found in galaxy groups with relatively high velocity dispersions. The mass of the hot gas we can observe in the E/S0 groups via their thermal X-ray emission is, on average, as much as the baryonic mass of the galaxies in these groups. By comparison, galaxy clusters have as much or more hot gas than stellar mass. Hot gas in S-rich groups, however, is of low enough temperature for its X-ray emission to suffer heavy absorption due to Galactic HI and related observational effects, and hence is hard to detect. We postulate that such lower temperature hot gas does exist in low velocity dispersion, S-rich groups, and explore the consequences of this assumption. For a wide range of metallicity and density, hot gas in S-rich groups can cool in far less than a Hubble time. If such gas exists and can cool, especially when interacting with HI in existing galaxies, then it can help link together a number of disparate observations, both Galactic and extragalactic, that are otherwise difficult to understand.Comment: 16 pages with one figure. ApJ Letters, in pres

    Warm Molecular Hydrogen Emission in Normal Edge-On Galaxies NGC 4565 and NGC 5907

    Get PDF
    We have observed warm molecular hydrogen in two nearby edge-on disk galaxies, NGC 4565 and NGC 5907, using the Spitzer high-resolution infrared spectrograph. The 0-0 S(0) 28.2 micron and 0-0 S(1) 17.0 micron pure rotational lines were detected out to 10 kpc from the center of each galaxy on both sides of the major axis, and in NGC 4565 the S(0) line was detected at r = 15 kpc on one side. This location lies beyond a steep drop in the radio continuum emission from cosmic rays in the disk. Despite indications that star formation activity decreases with radius, the H2 excitation temperature and the ratio of the H2 line and the far-IR luminosity surface densities, Sigma_L(H2}/Sigma_L(TIR}, change very little as a function of radius, even into the diffuse outer region of the disk of NGC 4565. This suggests that the source of excitation of the H2 operates over a large range of radii, and is broadly independent of the strength and relative location of UV emission from young stars. Although excitation in photodissociation regions is the most common explanation for the widespread H2 emission, cosmic ray heating or shocks cannot be ruled out. The inferred mass surface densities of warm molecular hydrogen in both edge-on galaxies differ substantially, being 4(-60) M_solar/pc^2 and 3(-50) M_solar/pc^2 at r = 10 kpc for NGC 4565 and NGC 5907, respectively. The higher values represent very unlikely point-source upper limits. The point source case is not supported by the observed emission distribution in the spectral slits. These mass surface densities cannot support the observed rotation velocities in excess of 200 km/s. Therefore, warm molecular hydrogen cannot account for dark matter in these disk galaxies, contrary to what was implied by a previous ISO study of the nearby edge-on galaxy NGC 891.Comment: Accepted for publication in the Astronomical Journal (20 pages, 17 figures, 7 tables

    A New Method of the Corotation Radius Evaluation in our Galaxy

    Full text link
    We propose a new method for determination of the rotation velocity of the galactic spiral density waves, correspondingly, the corotation radius, rCr_C, in our Galaxy by means of statistical analysis of radial oxygen distribution in the galactic disc derived over Cepheids. The corotation resonance happens to be located at rC7.07.6r_C \sim 7.0 - 7.6 kpc, depending on the rate of gas infall on to the galactic disc, the statistical error being 0.30.4\sim 0.3 - 0.4 kpc. Simultaneously, the constant for the rate of oxygen synthesis in the galactic disc was determined. We also argue in favour of a very short time-scale formation of the galactic disc, namely: tf2t_f \sim 2 Gyr. This scenario enables to solve the problem of the lack of intergalactic gas infall.Comment: 5 pages, 5 figure, 1 tabl

    Molecular Gas, Dust and Star Formation in the Barred Spiral NGC 5383

    Full text link
    We present multi-wavelength (interferometer and single-dish CO J=1-0, Halpha, broadband optical and near-infrared) observations of the classic barred spiral NGC 5383. We compare the observed central gas and dust morphology to the predictions of recent hydrodynamic simulations. In the nuclear region, our observations reveal three peaks lying along a S-shaped gas and dust distribution. In contrast, the model predicts a circumnuclear ring, not the observed S-shaped distribution; moreover, the predicted surface density contrast between the central gas accumulation and the bar dust lanes is an order of magnitude larger than observed. The discrepancies are not due to unexplored model parameter space or a nuclear bar but are probably due to the vigorous (7 solar masses per year) star formation activity in the center. As is common in similar bars, the star formation rate in the bar between the bar ends and the central region is low (~0.5 solar masses per yr), despite the high gas column density in the bar dust lanes; this is generally attributed to shear and shocks. We note a tendency for the HII regions to be associated with the spurs feeding the main bar dust lanes, but these are located on the leading side of the bar. We propose that stars form in the spurs, which provide a high column density but low shear environment. HII regions can therefore be found even on the leading side of the bar because the ionizing stars pass ballistically through the dust laneComment: Accepted for publication in The Astrophysical Journal, 33 pages (includes 10 figures

    Gas Mass Fractions and Star Formation in Blue-Sequence E/S0 Galaxies

    Get PDF
    Recent work has identified a population of low-redshift E/S0 galaxies that lie on the blue sequence in color vs. stellar mass parameter space, where spiral galaxies typically reside. While high-mass blue-sequence E/S0s often resemble young merger or interaction remnants likely to fade to the red sequence, we focus on blue-sequence E/S0s with lower stellar masses (< a few 10^10 M_sun), which are characterized by fairly regular morphologies and low-density field environments where fresh gas infall is possible. This population may provide an evolutionary link between early-type galaxies and spirals through disk regrowth. Focusing on atomic gas reservoirs, we present new GBT HI data for 27 E/S0s on both sequences as well as a complete tabulation of archival HI data for other galaxies in the Nearby Field Galaxy Survey. Normalized to stellar mass, the atomic gas masses for 12 of the 14 blue-sequence E/S0s range from 0.1 to >1.0. These gas-to-stellar mass ratios are comparable to those of spiral and irregular galaxies and have a similar dependence on stellar mass. Assuming that the HI is accessible for star formation, we find that many of our blue-sequence E/S0s can increase in stellar mass by 10-60% in 3 Gyr in both of two limiting scenarios, exponentially declining star formation and constant star formation. In a constant star formation scenario, about half of the blue-sequence E/S0s require fresh gas infall on a timescale of <3 Gyr to avoid exhausting their atomic gas reservoirs and evolving to the red sequence. We present evidence that star formation in these galaxies is bursty and likely involves externally triggered gas inflows. Our analysis suggests that most blue-sequence E/S0s are indeed capable of substantial stellar disk growth on relatively short timescales. (abridged)Comment: ApJ, accepted, 26 pages with 12 figures (5 color), 5 table

    Molecular Gas Kinematics in Barred Spiral Galaxies

    Get PDF
    To quantify the effect that bar driven mass inflow can have on the evolution of a galaxy requires an understanding of the dynamics of the inflowing gas. In this paper we study the kinematics of the dense molecular gas in a set of seven barred spiral galaxies to determine which dynamical effects dominate. The kinematics are derived from observations of the CO J=(1-0) line made with the Berkeley-Illinois-Maryland Association (BIMA) millimeter array. We compare the observed kinematics to those predicted by ideal gas hydrodynamic and ballistic cloud-based models of gas flow in a barred potential. The hydrodynamic model is in good qualitative agreement with both the current observations of the dense gas and previous observations of the kinematics of the ionized gas. The observed kinematics indicate that the gas abruptly changes direction upon entering the dust lanes to flow directly down the dust lanes along the leading edge of the bar until the dust lanes approach the nuclear ring. Near the location where the dust lanes intersect the nuclear ring, we see two velocity components: a low velocity component, corresponding to gas on circular orbits, and a higher velocity component, which can be attributed to the fraction of gas flowing down the bar dust lane which sprays past the contact point toward the other half of the bar. The ballistic cloud-based model of the ISM is not consistent with the observed kinematics. The kinematics in the dust lanes require large velocity gradients which cannot be reproduced by an ISM composed of ballistic clouds with long mean-free-paths. Therefore, even the dense ISM responds to hydrodynamic forces.Comment: To be published in the Astrophysical Journal, Nov. 20, 199

    X-Ray Searches for Emission from the WHIM in the Galactic Halo and the Intergalactic Medium

    Full text link
    At least 50% of the baryons in the local universe are undetected and predicted to be in a hot dilute phase (1E5-1E7 K) in low and moderate overdensity environments. We searched for the predicted diffuse faint emission through shadowing observations whereby cool foreground gas absorbs more distant diffuse emission. Observations were obtained with Chandra and XMM-Newton. Using the cold gas in two galaxies, NGC 891 and NGC 5907, shadows were not detected and a newer observation of NGC 891 fails to confirm a previously reported X-ray shadow. Our upper limits lie above model predictions. For Local Group studies, we used a cloud in the Magellanic Stream and a compact high velocity cloud to search for a shadow. Instead of a shadow, the X-ray emission was brighter towards the Magellanic Stream cloud and there is a less significant brightness enhancement toward the other cloud also. The brightness enhancement toward the Magellanic Stream cloud is probably due to an interaction with a hot ambient medium that surrounds the Milky Way. We suggest that this interaction drives a shock into the cloud, heating the gas to X-ray emitting temperatures.Comment: 10 ApJ pages with 10 figure
    corecore