255 research outputs found

    Three-dimensional magnetic and abundance mapping of the cool Ap star HD 24712 I. Spectropolarimetric observations in all four Stokes parameters

    Get PDF
    High-resolution spectropolarimetric observations provide simultaneous information about stellar magnetic field topologies and three-dimensional distributions of chemical elements. Here we present analysis of a unique full Stokes vector spectropolarimetric data set, acquired for the cool magnetic Ap star HD 24712. The goal of our work is to examine circular and linear polarization signatures inside spectral lines and to study variation of the stellar spectrum and magnetic observables as a function of rotational phase. HD 24712 was observed with the HARPSpol instrument at the 3.6-m ESO telescope over a period of 2010-2011. The resulting spectra have S/N ratio of 300-600 and resolving power exceeding 100000. The multiline technique of least-squares deconvolution (LSD) was applied to combine information from the spectral lines of Fe-peak and rare-earth elements. We used the HARPSPol spectra of HD 24712 to study the morphology of the Stokes profile shapes in individual spectral lines and in LSD Stokes profiles corresponding to different line masks. From the LSD Stokes V profiles we measured the longitudinal component of the magnetic field, , with an accuracy of 5-10 G. We also determined the net linear polarization from the LSD Stokes Q and U profiles. We determined an improved rotational period of the star, P_rot = 12.45812 +/- 0.00019d. We measured from the cores of Halpha and Hbeta lines. The analysis of measurements showed no evidence for a significant radial magnetic field gradient in the atmosphere of HD 24712. We used our and net linear polarization measurements to determine parameters of the dipolar magnetic field topology. We found that magnetic observables can be reasonably well reproduced by the dipolar model. We discovered rotational modulation of the Halpha core and related it a non-uniform surface distribution of rare-earth elements.Comment: Accepted for publication in A&

    Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani

    Full text link
    According to our current understanding, a subclass of the upper main sequence chemically peculiar stars, called mercury-manganese (HgMn), is non-magnetic. Nevertheless, chemical inhomogeneities were recently discovered on their surfaces. At the same time, no global magnetic fields stronger than 1-100 G are detected by modern studies. The goals of our study are to search for magnetic field in the HgMn binary system 66 Eri and to investigate chemical spots on the stellar surfaces of both components. Our analysis is based on high quality spectropolarimetric time-series observations obtained during 10 consecutive nights with the HARPSpol instrument at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search we employed a least-squares deconvolution (LSD). We used spectral disentangling to measure radial velocities and study line profile variability. Chemical spot geometry was reconstructed using multi-line Doppler imaging. We report a non-detection of magnetic field in 66 Eri, with error bars 10-24 G for the longitudinal field. Circular polarization profiles also do not indicate any signatures of complex surface magnetic fields. For a simple dipolar field configuration we estimated an upper limit of the polar field strength to be 60-70 G. For the HgMn component we found variability in spectral lines of Ti, Ba, Y, and Sr with the rotational period equal to the orbital one. The surface maps of these elements reconstructed with the Doppler imaging technique, show relative underabundance on the hemisphere facing the secondary component. The contrast of chemical inhomogeneities ranges from 0.4 for Ti to 0.8 for Ba.Comment: 13 pages, 14 figure

    Magnetism, chemical spots, and stratification in the HgMn star Ï• Phoenicis

    Get PDF
    Context. Mercury-manganese (HgMn) stars have been considered as non-magnetic and non-variable chemically peculiar (CP) stars for a long time. However, recent discoveries of the variability in spectral line profiles have suggested an inhomogeneous surface distribution of chemical elements in some HgMn stars. From the studies of other CP stars it is known that magnetic field plays a key role in the formation of surface spots. All attempts to find magnetic fields in HgMn stars have yielded negative results. Aims. In this study, we investigate the possible presence of a magnetic field in Ï• Phe (HD 11753) and reconstruct surface distribution of chemical elements that show variability in spectral lines.We also test a hypothesis that a magnetic field is concentrated in chemical spots and look into the possibility that some chemical elements are stratified with depth in the stellar atmosphere. Methods. Our analysis is based on high-quality spectropolarimetric time-series observations, covering a full rotational period of the star. Spectra were obtained with the HARPSpol at the ESO 3.6-m telescope. To increase the sensitivity of the magnetic field search, we employed the least-squares deconvolution (LSD) technique. Using Doppler imaging code INVERS10, we reconstructed surface chemical distributions by utilising information from multiple spectral lines. The vertical stratification of chemical elements was calculated with the DDAFit program. Results. Combining information from all suitable spectral lines, we set an upper limit of 4 G on the mean longitudinal magnetic field. For chemical spots, an upper limit on the longitudinal field varies between 8 and 15 G. We confirmed the variability of Y, Sr, and Ti and detected variability in Cr lines. Stratification analysis showed that Y and Ti are not concentrated in the uppermost atmospheric layers. Conclusions. Our spectropolarimetric observations rule out the presence of a strong, globally-organised magnetic field in Ï• Phe. This implies an alternative mechanism of spot formation, which could be related to a non-equilibrium atomic diffusion. However, the typical time scales of the variation in stratification predicted by the recent time-dependent diffusion models exceed significantly the spot evolution time-scale reported for Ï• Phe

    Magnetic field topology and chemical spot distributions in the extreme Ap star HD 75049

    Get PDF
    Intermediate-mass, magnetic chemically peculiar (Ap) stars provide a unique opportunity to study the topology of stellar magnetic fields in detail and to investigate magnetically driven processes of spot formation. Here we aim to derive the surface magnetic field geometry and chemical abundance distributions for the extraordinary Ap star HD 75049. This object hosts a surface field of ~30 kG, one of the strongest known for any non-degenerate star. We used time-series of high-resolution HARPS intensity and circular polarisation observations. These data were interpreted with the help of magnetic Doppler imaging and model atmospheres incorporating effects of a non-solar chemical composition and a strong magnetic field. We refined the rotational period of HD 75049 to Prot=4.048267+/-0.000036 d. We also derived basic stellar parameters, Teff=10250+/-250 K and logg=4.3+/-0.1. Magnetic Doppler imaging revealed that the field topology of HD 75049 is poloidal and dominated by a dipolar contribution with a peak surface field strength of 39 kG. At the same time, deviations from the classical axisymmetric oblique dipolar configuration are significant. Chemical surface maps of Si, Cr, Fe, and Nd show abundance contrasts of 0.5-1.4 dex, which is low compared with many other Ap stars. Nd is found to be enhanced close to the magnetic pole, whereas Si and Cr are concentrated predominantly at the magnetic equator. The iron distribution shows low-contrast features both at the magnetic equator and the pole. The morphology of the magnetic field and the properties of chemical spots in HD 75049 are qualitatively similar to those of Ap stars with weaker fields. Consequently, whatever mechanism forms and sustains global magnetic fields in intermediate-mass main-sequence stars, it operates in the same way over the entire observed range of magnetic field strengths.Comment: accepted for publication in A&

    The search for magnetic fields in mercury-manganese stars

    Full text link
    We performed a highly sensitive search for magnetic fields on a large set of HgMn stars. With the aid of a new polarimeter attached to the HARPS spectrometer at the ESO 3.6m-telescope, we obtained high-quality circular polarization spectra of 41 single and double HgMn stars. Using a multi-line analysis technique on each star, we co-added information from hundreds of spectral lines resulting in significantly greater sensitivity to the presence of magnetic fields, including very weak fields. For the 47 individual objects studied, including 6 components of SB2 systems, we do not detect any magnetic fields at greater than the 3 sigma level. The lack of detection in the circular polarization profiles indicates that if strong fields are present on these stars, they must have complex surface topologies. For simple global fields, our detection limits imply upper limits to the fields present of 2-10 Gauss in the best cases. We conclude that HgMn stars lack large-scale magnetic fields, typical for spotted magnetic Ap stars, sufficient to form and sustain the chemical spots observed on HgMn stars. Our study confirms that in addition to magnetically altered atomic diffusion, there exists another differentiation mechanism operating in the atmospheres of late-B main sequence stars which can compositional inhomogeneities on their surfaces.Comment: 12 pages, 8 figures, 2 table

    Are there tangled magnetic fields on HgMn stars?

    Full text link
    Several recent spectrophotometric studies failed to detect significant global magnetic fields in late-B HgMn chemically peculiar stars, but some investigations have suggested the presence of strong unstructured or tangled fields in these objects. We used detailed spectrum synthesis analysis to search for evidence of tangled magnetic fields in high-quality observed spectra of 8 slowly rotating HgMn stars and one normal late-B star. We also evaluated recent sporadic detections of weak longitudinal magnetic fields in HgMn stars based on the moment technique. Our analysis of the Zeeman broadening of magnetically sensitive spectral lines reveals no evidence of tangled magnetic fields in any of the studied HgMn or normal stars. We infer upper limits of 200-700 G for the mean magnetic field modulus -- much smaller than the field strengths implied by studies based on differential magnetic line intensification and quadratic field diagnostics. The new HARPSpol longitudinal field measurements for the extreme HgMn star HD 65949 and the normal late-B star 21 Peg are consistent with zero at a precision of 3-6 G. Re-analysis of our Stokes V spectra of the spotted HgMn star HD 11753 shows that the recent moment technique measurements retrieved from the same data are incompatible with the lack of circular polarization signatures in the spectrum of this star. We conclude that there is no evidence for substantial tangled magnetic fields on the surfaces of studied HgMn stars. We cannot independently confirm the presence of very strong quadratic or marginal longitudinal fields for these stars, so results from the moment technique are likely to be spurious.Comment: 12 pages, 11 figures; accepted for publication in A&

    Quantitative copy number analysis by Multiplex Ligation-dependent Probe Amplification (MLPA) of BRCA1-associated breast cancer regions identifies BRCAness

    Get PDF
    Our group has previously employed array Comparative Genomic Hybridization (aCGH) to assess the genomic patterns of BRCA1-mutated breast cancers. We have shown that the so-called BRCA1-like(aCGH) profile is also present in about half of all triple-negative sporadic breast cancers and is predictive for benefit from intensified alkylating chemotherapy. As aCGH is a rather complex method, we translated the BRCA1(aCGH) profile to a Multiplex Ligation-dependent Probe Amplification (MLPA) assay, to identify both BRCA1-mutated breast cancers and sporadic cases with a BRCA1-like(aCGH) profile. The most important genomic regions of the original aCGH based classifier (3q22-27, 5q12-14, 6p23-22, 12p13, 12q21-23, 13q31-34) were mapped to a set of 34 MLPA probes. The training set consisted of 39 BRCA1-like(aCGH) breast cancers and 45 non-BRCA1-like(aCGH) breast cancers, which had previously been analyzed by aCGH. The BRCA1-like(aCGH) group consisted of germline BRCA1-mutated cases and sporadic tumours with low BRCA1 gene expression and/or BRCA1 promoter methylation. We trained a shrunken centroids classifier on the training set and validation was performed on an independent test set of 40 BRCA1-like(aCGH) breast cancers and 32 non-BRCA1-like(aCGH) breast cancer tumours. In addition, we validated the set prospectively on 69 new triple-negative tumours. BRCAness in the training set of 84 tumours could accurately be predicted by prediction analysis of microarrays (PAM) (accuracy 94%). Application of this classifier on the independent validation set correctly predicted BRCA-like status of 62 out of 72 breast tumours (86%). Sensitivity and specificity were 85% and 87%, respectively. When the MLPA-test was subsequently applied to 46 breast tumour samples from a randomized clinical trial, the same survival benefit for BRCA1-like tumours associated with intensified alkylating chemotherapy was shown as was previously reported using the aCGH assay. Since the MLPA assay can identify BRCA1-deficient breast cancer patients, this method could be applied both for clinical genetic testing and as a predictor of treatment benefit. BRCA1-like tumours are highly sensitive to chemotherapy with DNA damaging agents, and most likely to poly ADP ribose polymerase (PARP)-inhibitors. The MLPA assay is rapid and robust, can easily be multiplexed, and works well with DNA derived from paraffin-embedded tissue

    SPICES: Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems

    Get PDF
    SPICES (Spectro-Polarimetric Imaging and Characterization of Exoplanetary Systems) is a five-year M-class mission proposed to ESA Cosmic Vision. Its purpose is to image and characterize long-period extrasolar planets and circumstellar disks in the visible (450 - 900 nm) at a spectral resolution of about 40 using both spectroscopy and polarimetry. By 2020/22, present and near-term instruments will have found several tens of planets that SPICES will be able to observe and study in detail. Equipped with a 1.5 m telescope, SPICES can preferentially access exoplanets located at several AUs (0.5-10 AU) from nearby stars (<<25 pc) with masses ranging from a few Jupiter masses to Super Earths (∼\sim2 Earth radii, ∼\sim10 M⊕_{\oplus}) as well as circumstellar disks as faint as a few times the zodiacal light in the Solar System

    Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial

    Get PDF
    Background: Exercise started shortly after breast cancer diagnosis might prevent or diminish fatigue complaints. The Physical Activity during Cancer Treatment (PACT) study was designed to primarily examine the effects of an 18-week exercise intervention, offered in the daily clinical practice setting and starting within 6 weeks after diagnosis, on preventing an increase in fatigue. Methods: This multi-centre controlled trial randomly assigned 204 breast cancer patients to usual care (n = 102) or supervised aerobic and resistance exercise (n = 102). By design, all patients received chemotherapy between baseline and 18 weeks. Fatigue (i.e., primary outcome at 18 weeks), quality of life, anxiety, depression, and physical fitness were measured at 18 and 36 weeks. Results: Intention-to-treat mixed linear model analyses showed that physical fatigue increased significantly less during cancer treatment in the intervention group compared to control (mean between-group differences at 18 weeks: -1.3; 95 % CI -2.5 to -0.1; effect size -0.30). Results for general fatigue were comparable but did not reach statistical significance (-1.0, 95% CI -2.1; 0.1; effect size -0.23). At 18 weeks, submaximal cardiorespiratory fitness and several muscle strength tests (leg extension and flexion) were significantly higher in the intervention group compared to control, whereas peak oxygen uptake did not differ between groups. At 36 weeks these differences were no longer statistically significant. Quality of life outcomes favoured the exercise group but were not significantly different between groups. Conclusions: A supervised 18-week exercise programme offered early in routine care during adjuvant breast cancer treatment showed positive effects on physical fatigue, submaximal cardiorespiratory fitness, and muscle strength. Exercise early during treatment of breast cancer can be recommended. At 36 weeks, these effects were no longer statistically significant. This might have been caused by the control participants' high physical activity levels during follow-up
    • …
    corecore