348 research outputs found
Decaying shock studies of phase transitions in MgOSiO2 systems: implications for the Super-Earths interiors
We report an experimental study of the phase diagrams of periclase (MgO),
enstatite (MgSiO3) and forsterite (Mg2SiO4) at high pressures. We investigated
with laser driven decaying shocks the pressure/temperature curves of MgO,
MgSiO3 and Mg2SiO4 between 0.2-1.2 TPa, 0.12-0.5 TPa and 0.2-0.85 TPa
respectively. A melting signature has been observed in MgO at 0.47 TPa and 9860
K, while no phase changes were observed neither in MgSiO3 nor in Mg2SiO4. An
increasing of reflectivity of MgO, MgSiO3 and Mg2SiO4 liquids have been
detected at 0.55 TPa -12 760 K, 0.15 TPa - 7540 K, 0.2 TPa - 5800 K,
respectively. In contrast to SiO2, melting and metallization of these compounds
do not coincide implying the presence of poor electrically conducting liquids
close to the melting lines. This has important implications for the generation
of dynamos in Super-earths mantles
TIME EVOLUTION of KELVIN-HELMHOLTZ VORTICES ASSOCIATED with COLLISIONLESS SHOCKS in LASER-PRODUCED PLASMAS
We report experimental results on Kelvin-Helmholtz (KH) instability and resultant vortices in laser-produced plasmas. By irradiating a double plane target with a laser beam, asymmetric counterstreaming plasmas are created. The interaction of the plasmas with different velocities and densities results in the formation of asymmetric shocks, where the shear flow exists along the contact surface and the KH instability is excited. We observe the spatial and temporal evolution of plasmas and shocks with time-resolved diagnostics over several shots. Our results clearly show the evolution of transverse fluctuations, wavelike structures, and circular features, which are interpreted as the KH instability and resultant vortices. The relevant numerical simulations demonstrate the time evolution of KH vortices and show qualitative agreement with experimental results. Shocks, and thus the contact surfaces, are ubiquitous in the universe; our experimental results show general consequences where two plasmas interact
A comparative study of Higgs boson production from vector-boson fusion
The data taken in Run II at the Large Hadron Collider have started to probe Higgs boson production at high transverse momentum. Future data will provide a large sample of events with boosted Higgs boson topologies, allowing for a detailed understanding of electroweak Higgs boson plus two-jet production, and in particular the vector-boson fusion mode (VBF). We perform a detailed comparison of precision calculations for Higgs boson production in this channel, with particular emphasis on large Higgs boson transverse momenta, and on the jet radius dependence of the cross section. We study fixed-order predictions at next-to-leading order and next-to-next-to-leading order QCD, and compare the results to NLO plus parton shower (NLOPS) matched calculations. The impact of the NNLO corrections on the central predictions is mild, with inclusive scale uncertainties of the order of a few percent, which can increase with the imposition of kinematic cuts. We find good agreement between the fixed-order and matched calculations in non-Sudakov regions, and the various NLOPS predictions also agree well in the Sudakov regime. We analyze backgrounds to VBF Higgs boson production stemming from associated production, and from gluon-gluon fusion. At high Higgs boson transverse momenta, the âyjj and/or mjj cuts typically used to enhance the VBF signal over background lead to a reduced efficiency. We examine this effect as a function of the jet radius and using different definitions of the tagging jets. QCD radiative corrections increase for all Higgs production modes with increasing Higgs boson pT, but the proportionately larger increase in the gluon fusion channel results in a decrease of the gluon-gluon fusion background to electroweak Higgs plus two jet production upon requiring exclusive two-jet topologies. We study this effect in detail and contrast in particular a central jet veto with a global jet multiplicity requirement
Swift detection of all previously undetected blazars in a micro-wave flux-limited sample of WMAP foreground sources
Almost the totality of the bright foreground sources in the WMAP CMB maps are
blazars, a class of sources that show usually also X-ray emission. However, 23
objects in a flux-limited sample of 140 blazars of the WMAP catalog (first
year) were never reported before as X-ray sources. We present here the results
of 41 Swift observations which led to the detection of all these 23 blazars in
the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray
emitters and that the distribution of the micro-wave to X-ray spectral slope
of LBL blazars is very narrow, confirming that the X-ray flux
of most blazars is a very good estimator of their micro-wave emission. The
X-ray spectral shape of all the objects that were observed long enough to allow
spectral analysis is flat and consistent with inverse Compton emission within
the commonly accepted view where the radiation from blazars is emitted in a
Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio
galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions
are X-ray sources detectable by the present generation of X-ray satellites. An
hypothetical all-sky soft X-ray survey with sensitivity of approximately
erg/s would be crucial to locate and remove over 100,000 blazars
from CMB temperature and polarization maps and therefore accurately clean the
primordial CMB signal from the largest population of extragalactic foreground
contaminants.Comment: 13 pages, 4 figures, 5 tables, A&A in pres
Swift observations of IBL and LBL objects
BL Lacs are an enigmatic class of active galactic nuclei (AGNs),
characterized by the non-thermal continuum typically attributed to synchrotron
and inverse Compton emission. Depending on the frequency location of the maxima
of these components, they are subdivided into three subclasses LBLs, IBLs, and
HBLs. We present the results of a set of observations of eight BL Lac objects
of LBL and IBL type performed by the XRT and UVOT detectors onboard the Swift
satellite between January 2005 and November 2006. We are mainly interested in
measuring the spectral parameters, and particularly the steepness between the
UV and the X-ray band, useful for determining the classification of these
sources. We compare the behavior of these sources with previous XMM-Newton,
BeppoSAX obser- vations and with historical data in the X-ray and in the
optical band. We are also interested in classifying the sources in our sample
on the basis of the observations and comparing them with their classification
presented in literature. We performed X-ray spectral analysis of observed BL
Lac objects using a simple powerlaw and in a few cases the log-parabolic model.
We also combined the UV emission with the low energy X-ray data to We used
observational data to classify sources in our sample and derived parameters of
their spectral energy distribution. We found that for the IBLs X-rays low
states show features of the high energy component, usually interpreted as due
to inverse Compton emission. Sources in our sample exhibit a range of temporal
UV and X-ray behaviors, some objects having clear and neat correlated UV and
X-ray variations (e.g. ON231) and other objects showing no clear (e.g. AO
0235+164) UV and X-ray correlation. Finally, we also note that our estimates of
spectral curvature are in the range of that measured for the HBLs.Comment: 10 pages, 7 figures, published in A&
WEBT multiwavelength monitoring and XMM-Newton observations of BL Lacertae in 2007-2008. Unveiling different emission components
In 2007-2008 we carried out a new multiwavelength campaign of the Whole Earth
Blazar Telescope (WEBT) on BL Lacertae, involving three pointings by the
XMM-Newton satellite, to study its emission properties. The source was
monitored in the optical-to-radio bands by 37 telescopes. The brightness level
was relatively low. Some episodes of very fast variability were detected in the
optical bands. The X-ray spectra are well fitted by a power law with photon
index of about 2 and photoelectric absorption exceeding the Galactic value.
However, when taking into account the presence of a molecular cloud on the line
of sight, the data are best fitted by a double power law, implying a concave
X-ray spectrum. The spectral energy distributions (SEDs) built with
simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations
suggest that the peak of the synchrotron emission lies in the near-IR band, and
show a prominent UV excess, besides a slight soft-X-ray excess. A comparison
with the SEDs corresponding to previous observations with X-ray satellites
shows that the X-ray spectrum is extremely variable. We ascribe the UV excess
to thermal emission from the accretion disc, and the other broad-band spectral
features to the presence of two synchrotron components, with their related SSC
emission. We fit the thermal emission with a black body law and the non-thermal
components by means of a helical jet model. The fit indicates a disc
temperature greater than 20000 K and a luminosity greater than 6 x 10^44 erg/s.Comment: 11 pages, 7 figures, accepted for publication in A&
- âŠ