Almost the totality of the bright foreground sources in the WMAP CMB maps are
blazars, a class of sources that show usually also X-ray emission. However, 23
objects in a flux-limited sample of 140 blazars of the WMAP catalog (first
year) were never reported before as X-ray sources. We present here the results
of 41 Swift observations which led to the detection of all these 23 blazars in
the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray
emitters and that the distribution of the micro-wave to X-ray spectral slope
αmux of LBL blazars is very narrow, confirming that the X-ray flux
of most blazars is a very good estimator of their micro-wave emission. The
X-ray spectral shape of all the objects that were observed long enough to allow
spectral analysis is flat and consistent with inverse Compton emission within
the commonly accepted view where the radiation from blazars is emitted in a
Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio
galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions
are X-ray sources detectable by the present generation of X-ray satellites. An
hypothetical all-sky soft X-ray survey with sensitivity of approximately
10−15 erg/s would be crucial to locate and remove over 100,000 blazars
from CMB temperature and polarization maps and therefore accurately clean the
primordial CMB signal from the largest population of extragalactic foreground
contaminants.Comment: 13 pages, 4 figures, 5 tables, A&A in pres