

Heterogeneously Catalytic Hydrogenation of Animal Fatty Acids in Supercritical CO₂

<u>Stefania Muto</u>^{1,2*}, F. Zaccheria¹, N. Ravasio¹ and R. Bogel-Lukasik² ¹CNR-ISTM, Via Golgi 19, 20133 Milan, Italy, ²Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, 1649-038, Portugal, * stefania.muto@istm.cnr.it

The heterogeneous catalytic hydrogenation of fatty acids is a possible system to obtain biodiesel from renewable resources[1], because they are not chemically very different from some petroleum fractions [2]. Non conventional solvents as supercritical fluids can be investigated to develop a process that follows the principles of green chemistry and environmental sustainability. Carbon dioxide is readily available, cheap, recyclable, non-toxic and non-flammable and for these reasons it is used as solvent in many types of catalytic reactions [3].

The LNEG laboratory is optimizing a green process to obtain chains of C16-C18 hydrocarbons by catalytic hydrogenation of animal fats using H₂ pressure and supercritical CO₂.

Animal Fatty Acids Biodiesel

The catalytic reactions were performed varying the temperature and CO_2 and H_2 pressures. The raw material used was a mixture of animal fatty acids and the catalyst was a Fluid Catalytic Cracking (FCC) one, used in industry for the cracking of high-molecular weight hydrocarbon fractions. The data of the optimization reactions are reported in **Table 1**. The system used for the hydrogenations of fatty acids is shown in **Figure 1**.

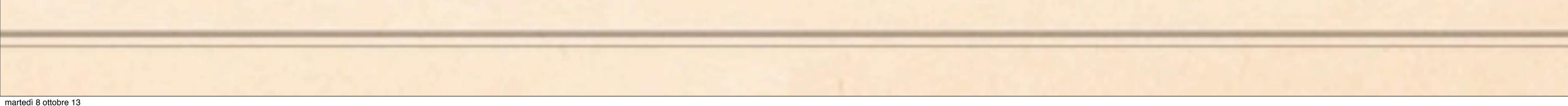
Table 1. Reactions of hydrogenation of animal fatty acids, catalyzed by FCC in supercritical CO₂: optimization of the temperature and the H₂ and CO₂ pressures.

Run	T (°C)	H ₂ p (bar)	CO ₂ p (bar)	Catalyst Recovered (g)	Liquid phase (g)	Solid phase (g)	Total yield (g)	Total percent yield (%)
R14	340	11	140	5.351	4.706	5.821	10.527	94
R15	320	11	140	5.541	_	14.829	14.829	132
R16	300	11	140	5.339	_	10.687	10.687	95
R17	340	5.5	140	5.222	5.274	2.903	8.177	73
R18	340	22	140	5.070	4.819	3.205	8.024	72
R19	340	5.5	160	4.999	2.750	4.582	7.332	65

Figure 1. The	e reactor an	d the system	n used to	hydrogenate 1	the animal fa	ats with CO ₂ and H ₂
pressures.						

Experimental conditions: FCC catalyst = 4.8 g, raw material = 11.2 g.

The mixture constituted by chains of C16-C18 alkanes should be liquid in the reactor at the end of the reaction and so we can suppose that the optimal conditions of temperature and pressure of H_2 and CO_2 are those reported in **Run R17**, because there was a higher amount of liquid phase than in the others. These assumptions can be confirmed by GC analysis.


Aknowledgements

The autors would like to thank the COST program for STSM grant and the LNEG laboratory for the hospitality and the opportunity to work with them.

References:

LABORUM

[1] F. Zaccheria, R. Psaro, N. Ravasio, Green Chem., 2009, 11, 462–465.
[2] A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, 2411–2502.
[3] M. G. Hitzler, F. R. Smail, S. K. Ross, M. Poliakoff, Org. Process Res. Dev., 1998, 2, 137-146.

