274 research outputs found

    The Impact of Cash Transfers on School Enrollment: Evidence from Ecuador

    Full text link
    This paper presents evidence about the impact on school enrollment of a program in Ecuador that gives cash transfers to the 40 percent poorest families. The evaluation design consists of a randomized experiment for families around the first quintile of the poverty index and of a regression discontinuity design for families around the second quintile of this index, which is the program's eligibility threshold. This allows us to compare results from two different credible identification methods, and to investigate whether the impact varies with families' poverty level. Around the first quintile of the poverty index the impact is positive while it is equal to zero around the second quintile. This suggests that for the poorest families the program lifts a credit constraint while this is not the case for families close to the eligibility threshold

    Testing the Epeak - Eiso relation for GRBs detected by Swift and Suzaku-WAM

    Full text link
    One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy Epeak) of the nu-F(nu) spectrum and the isotropic radiated energy, Eiso. Since most gamma-ray bursts (GRBs) have Epeak above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate Epeak values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected, one can accurately fit Epeak and Eiso and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of April 2009, there were 48 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 48 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine their spectral parameters. For those bursts with spectroscopic redshifts, we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 91 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.Comment: Accepted for publication in the Astrophysical Journa

    GRB 081028 and its late-time afterglow re-brightening

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical SocietySwift captured for the first time a smoothly rising X-ray re-brightening of clear non-flaring origin after the steep decay in a long gamma-ray burst (GRB): GRB 081028. A rising phase is likely present in all GRBs but is usually hidden by the prompt tail emission and constitutes the first manifestation of what is later to give rise to the shallow decay phase. Contemporaneous optical observations reveal a rapid evolution of the injection frequency of a fast cooling synchrotron spectrum through the optical band, which disfavours the afterglow onset (start of the forward shock emission along our line of sight when the outflow is decelerated) as the origin of the observed re-brightening. We investigate alternative scenarios and find that the observations are consistent with the predictions for a narrow jet viewed off-axis. The high on-axis energy budget implied by this interpretation suggests different physical origins of the prompt and (late) afterglow emission. Strong spectral softening takes place from the prompt to the steep decay phase: we track the evolution of the spectral peak energy from the γ-rays to the X-rays and highlight the problems of the high latitude and adiabatic cooling interpretations. Notably, a softening of both the high and low spectral slopes with time is also observed. We discuss the low on-axis radiative efficiency of GRB 081028 comparing its properties against a sample of Swift long GRBs with secure Eγ,iso measurements.Peer reviewe

    The Two-Component Afterglow of Swift GRB 050802

    Full text link
    This paper investigates GRB 050802, one of the best examples of a it Swift gamma-ray burst afterglow that shows a break in the X-ray lightcurve, while the optical counterpart decays as a single power-law. This burst has an optically bright afterglow of 16.5 magnitude, detected throughout the 170-650nm spectral range of the UVOT on-board Swift. Observations began with the XRT and UVOT telescopes 286s after the initial trigger and continued for 1.2 x 10^6s. The X-ray lightcurve consists of three power-law segments: a rise until 420s, followed by a slow decay with alpha_2 = 0.63 +/- 0.03 until 5000s, after which, the lightcurve decays faster with a slope of alpha_3 = 1.59 +/- 0.03. The optical lightcurve decays as a single power-law with alpha_O = 0.82 +/- 0.03 throughout the observation. The X-ray data on their own are consistent with the break at 5000s being due to the end of energy injection. Modelling the optical to X-ray spectral energy distribution, we find that the optical afterglow can not be produced by the same component as the X-ray emission at late times, ruling out a single component afterglow. We therefore considered two-component jet models and find that the X-ray and optical emission is best reproduced by a model in which both components are energy injected for the duration of the observed afterglow and the X-ray break at 5000s is due to a jet break in the narrow component. This bright, well-observed burst is likely a guide for interpreting the surprising finding of Swift that bursts seldom display achromatic jet breaks.Comment: 13 pages, 5 figures, accepted MNRA

    GRB 081203A: Swift UVOT captures the earliest ultraviolet spectrum of a gamma-ray burst

    Get PDF
    We present the earliest ultraviolet (UV) spectrum of a gamma-ray burst (GRB) as observed with the Swift Ultra-Violet/Optical Telescope (UVOT). The GRB 081203A spectrum was observed for 50 s with the UV-grism starting 251 s after the Swift-Burst-Alert-Telescope (BAT) trigger. During this time, the GRB was ≈13.4 mag (u filter) and was still rising to its peak optical brightness. In the UV-grism spectrum, we find a damped Lyα line, Lyβ and the Lyman continuum break at a redshift z= 2.05 ± 0.01. A model fit to the Lyman absorption implies a gas column density of log NH i= 22.0 ± 0.1 cm−2, which is typical of GRB host galaxies with damped Lyα absorbers. This observation of GRB 081203A demonstrates that for brighter GRBs (v≈ 14 mag) with moderate redshift (0.5 < z < 3.5) the UVOT is able to provide redshifts, and probe for damped Lyα absorbers within 4–6 min from the time of the Swift-BAT trigger

    BL Lacertae objects beyond redshift 1.3 - UV-to-NIR photometry and photometric redshift for Fermi/LAT blazars

    Get PDF
    Observations of the gamma-ray sky with Fermi led to significant advances towards understanding blazars, the most extreme class of Active Galactic Nuclei. A large fraction of the population detected by Fermi is formed by BL Lacertae (BL Lac) objects, whose sample has always suffered from a severe redshift incompleteness due to the quasi-featureless optical spectra. Our goal is to provide a significant increase of the number of confirmed high-redshift BL Lac objects contained in the 2 LAC Fermi/LAT catalog. For 103 Fermi/LAT blazars, photometric redshifts using spectral energy distribution fitting have been obtained. The photometry includes 13 broad-band filters from the far ultraviolet to the near-IR observed with Swift/UVOT and the multi-channel imager GROND at the MPG/ESO 2.2m telescope. Data have been taken quasi-simultaneously and the remaining source-intrinsic variability has been corrected for. We release the UV-to-near-IR 13-band photometry for all 103 sources and provide redshift constraints for 75 sources without previously known redshift. Out of those, eight have reliable photometric redshifts at z>1.3, while for the other 67 sources we provide upper limits. Six of the former eight are BL Lac objects, which quadruples the sample of confirmed high-redshift BL Lac. This includes three sources with redshifts higher than the previous record for BL Lac, including CRATES J0402-2615 with the best-fit solution at z~1.9.Comment: Uploaded correct Fig 4. Changed counterpart name for 2FGLJ0537.7-5716 from PKS 0541-834 (different source) to SUMSS J053748-57182

    Swift-UVOT detection of GRB 050318

    Full text link
    We present observations of GRB 050318 by the Ultra-Violet and Optical Telescope (UVOT) on-board the Swift observatory. The data are the first detections of a Gamma Ray Burst (GRB) afterglow decay by the UVOT instrument, launched specifically to open a new window on these transient sources. We showcase UVOTs ability to provide multi-color photometry and the advantages of combining UVOT data with simultaneous and contemporaneous observations from the high-energy detectors on the Swift spacecraft. Multiple filters covering 1,800-6,000 Angstroms reveal a red source with spectral slope steeper than the simultaneous X-ray continuum. Spectral fits indicate that the UVOT colors are consistent with dust extinction by systems at z = 1.2037 and z = 1.4436, redshifts where absorption systems have been pre-identified. However, the data can be most-easily reproduced with models containing a foreground system of neutral gas redshifted by z = 2.8 +/- 0.3. For both of the above scenarios, spectral and decay slopes are, for the most part, consistent with fireball expansion into a uniform medium, provided a cooling break occurs between the energy ranges of the UVOT and Swifts X-ray instrumentation.Comment: 15 pages, 4 figures, ApJ Letters, in pres

    Detection of GRB 090618 with RT-2 Experiment Onboard the Coronas-Photon Satellite

    Full text link
    We present the results of an analysis of the prompt gamma-ray emission from GRB 090618 using the RT-2 Experiment onboard the Coronas-Photon satellite. GRB 090618 shows multiple peaks and a detailed study of the temporal structure as a function of energy is carried out. As the GRB was incident at an angle of 77 degree to the detector axis, we have generated appropriate response functions of the detectors to derive the spectrum of this GRB. We have augmented these results using the publicly available data from the Swift BAT detector and show that a combined spectral analysis can measure the spectral parameters quite accurately. We also attempt a spectral and timing analysis of individual peaks and find evidence for a systematic change in the pulse emission characteristics for the successive pulses. In particular, we find that the peak energy of the spectrum, E_p, is found to monotonically decrease with time, for the successive pulses of this GRB.Comment: 12 pages, 6 figures, 3 tables, Accepted for publication in The Astrophysical Journa

    GROND coverage of the main peak of Gamma-Ray Burst 130925A

    Get PDF
    Prompt or early optical emission in gamma-ray bursts is notoriously difficult to measure, and observations of the dozen cases show a large variety of properties. Yet, such early emission promises to help us achieve a better understanding of the GRB emission process(es). We performed dedicated observations of the ultra-long duration (T90 about 7000 s) GRB 130925A in the optical/near-infrared with the 7-channel "Gamma-Ray Burst Optical and Near-infrared Detector" (GROND) at the 2.2m MPG/ESO telescope. We detect an optical/NIR flare with an amplitude of nearly 2 mag which is delayed with respect to the keV--MeV prompt emission by about 300--400 s. The decay time of this flare is shorter than the duration of the flare (500 s) or its delay. While we cannot offer a straightforward explanation, we discuss the implications of the flare properties and suggest ways toward understanding it.Comment: 9 pages, 9 figures, accepted for publ. in A&
    corecore