7,030 research outputs found

    Neutrino-Nucleus Cross Section Measurements using Stopped Pions and Low Energy Beta Beams

    Full text link
    Two new facilities have recently been proposed to measure low energy neutrino-nucleus cross sections, the nu-SNS (Spallation Neutron Source) and low energy beta beams. The former produces neutrinos by pion decay at rest, while the latter produces neutrinos from the beta decays of accelerated ions. One of the uses of neutrino-nucleus cross section measurements is for supernova studies, where typical neutrino energies are 10s of MeV. In this energy range there are many different components to the nuclear response and this makes the theoretical interpretation of the results of such an experiment complex. Although even one measurement on a heavy nucleus such as lead is much anticipated, more than one data set would be still better. We suggest that this can be done by breaking the electron spectrum down into the parts produced in coincidence with one or two neutrons, running a beta beam at more than one energy, comparing the spectra produced with pions and a beta beam or any combination of these.Comment: 6 pages, 6 figure

    PSR J0737-3039B: A probe of radio pulsar emission heights

    Get PDF
    In the double pulsar system PSR J0737-3039A/B the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well defined geometrical parameters of the system, we determine the minimum emission height to be ~ 20 neutron star radii in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be ~ 2500 neutron star radii. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.Comment: 29 pages, 14 figures, Accepted by ApJ on 3 March 201

    Fatigue of notched fiber composite laminates. Part 1: Analytical model

    Get PDF
    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given

    ECG Motion Artefact Reduction Improvements of a Chest-based Wireless Patient Monitoring System

    Get PDF
    Abstract An evaluation of motion artefact for a newly CE approved wireless bodyworn monitoring device is presented. This evaluation has shown that the system under test has greatly reduced motion artefact with comparison to an FDA-approved leaded system. Analysis of physiological data, such as quality of ECG signal, accuracy of recording of heart rate, temperature and ECG R-R interval has shown the system to offer high fidelity recordings and a robust service during a range of basic movements. Presented results have shown that the average difference in heart rate between the prototype and the reference device was 3.8bpm with standard deviation of 12.4bpm. Temperature analysis indicated the average difference between the prototype and the reference device was 5.66 o C, with standard deviation of 0.44 o C. R-R interval analysis highlighted mean interval difference as 78.96ms with standard deviation of 123.1ms. In general, the user activity of bending had highest errors due to the considerable torso movement

    The Evolution of PSR J0737-3039B and a Model for Relativistic Spin Precession

    Full text link
    We present the evolution of the radio emission from the 2.8-s pulsar of the double pulsar system PSR J0737-3039A/B. We provide an update on the Burgay et al. (2005) analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy/yr at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.6 deg/yr. The pulse profile changes are most likely caused by relativistic spin precession, but can not be easily explained with a circular hollow-cone beam as in the model of Clifton & Weisberg (2008). Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent and similar to those derived by Breton et al. (2008). However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.Comment: 20 pages, 18 figures, Accepted by ApJ on 2 August 201

    Quasi-periodic modulation of solar and stellar flaring emission by magnetohydrodynamic oscillations in a nearby loop

    Get PDF
    We propose a new model for quasi-periodic modulation of solar and stellar flaring emission. Fast magnetoacoustic oscillations of a non-flaring loop can interact with a nearby flaring active region. This interaction occurs when part of the oscillation situated outside the loop reaches the regions of steep gradients in magnetic field within an active region and produces periodic variations of electric current density. The modulation depth of these variations is a few orders of magnitude greater than the amplitude of the driving oscillation. The variations of the current can induce current-driven plasma micro-instabilities and thus anomalous resistivity. This can periodically trigger magnetic reconnection, and hence acceleration of charged particles, producing quasi-periodic pulsations of X-ray, optical and radio emission at the arcade footpoints

    Neutrino-Lepton Masses, Zee Scalars and Muon g-2

    Get PDF
    Evidence for neutrino oscillations is pointing to the existence of tiny but finite neutrino masses. Such masses may be naturally generated via radiative corrections in models such as the Zee model where a singlet Zee-scalar plays a key role. We minimally extend the Zee model by including a right-handed singlet neutrino \nu_R. The radiative Zee-mechanism can be protected by a simple U(1)_X symmetry involving only the \nu_R and a Zee-scalar. We further construct a class of models with a single horizontal U(1)_FN (a la Frogatt-Nielsen) such that the mass patterns of the neutrinos and leptons are naturally explained. We then analyze the muon anomalous magnetic moment (g-2) and the flavor changing \mu --> e\gamma decay. The \nu_R interaction in our minimal extension is found to induce the BNL g-2 anomaly, with a light charged Zee-scalar of mass 100-300 GeV.Comment: Version for Phys. Rev. Lett. (typos corrected, minor refinements

    The Parkes Multibeam Pulsar Survey – Vii. Timing Of Four Millisecond Pulsars And The Underlying Spin-Period Distribution Of The Galactic Millisecond Pulsar Population

    Get PDF
    We present timing observations of 4-ms pulsars discovered in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. PSRs J1552−4937 and J1843−1448 are isolated objects with spin periods of 6.28 and 5.47 ms, respectively. PSR J1727−2946 is in a 40-d binary orbit and has a spin period of 27 ms. The 4.43-ms pulsar J1813−2621 is in a circular 8.16-d binary orbit around a low-mass companion star with a minimum companion mass of 0.2
    • …
    corecore