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PSR J0737−3039B: A PROBE OF RADIO PULSAR EMISSION HEIGHTS
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ABSTRACT

In the double pulsar system PSR J0737−3039A/B, the strong wind produced by pulsar A distorts the magnetosphere
of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used
to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a
model of the wind-distorted magnetosphere of pulsar B and the well-defined geometrical parameters of the system,
we determine the minimum emission height to be ∼20RNS in the two bright orbital longitude regions. We can
determine the maximum emission height by accounting for the amount of deflection of the polar field line with
respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical
numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be ∼2500RNS.
The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated
pulsars.
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1. INTRODUCTION

The mechanism of pulsar radio emission and its origin within
the pulsar magnetosphere are not well understood (see, e.g.,
Hankins et al. 2009). In general, it is thought to be due to
coherent radiation from relativistic plasma streaming along
open magnetic field lines. Radio emission height estimates can
constrain the emission mechanism to some extent. In normal
isolated pulsars, radio emission heights have been estimated
from their emission geometry inferred from radio polarization
combined with the rotating vector model (Radhakrishnan &
Cooke 1969) and the pulse profile widths (Gil & Kijak 1993;
Kijak & Gil 1997; Kijak & Gil 2003). Gangadhara & Gupta
(2001) and Dyks et al. (2004) have also proposed a phase-
shift method to determine the emission height. In general, these
methods show that core component emission originates very
close to the surface of the neutron star (NS), but the conal
components come from well above the surface (Rankin 1990;
Mitra & Rankin 2002). However, these techniques are limited
in that we observe only a small section of the magnetosphere of
these isolated pulsars due to an unchanging line of sight.

PSR J0737−3039A/B is a unique binary system that provides
an excellent opportunity to study different emission regions
due to relativistic spin precession, allowing us to observe
different portions of the magnetosphere. We can also explore
magnetospheric distortion, which affects the observed emission
pattern. The two NSs of this system orbit each other in a
2.4 hr orbit; this is the only known pulsar binary system
in which both NSs have been detectable as radio pulsars
(Burgay et al. 2003; Lyne et al. 2004). The first-born recycled
pulsar—hereafter A—has a spin period of 23 ms and the second-
born pulsar—hereafter B—has a spin period of 2.8 s. The pulse
profile of A has been stable since its discovery, but that of
B has dramatically evolved through five years of observation,
culminating in its radio disappearance in 2008 March (Perera
et al. 2010).

3 Also an adjunct astronomer at the National Radio Astronomy Observatory,
Green Bank, WV 24944, USA.

Due to the unstable features of B’s pulse profiles, both on
long timescales and within a single orbit, it is challenging to
understand the emission geometry and the emission mechanism.
By fitting a model to eclipses of A due to absorption in
the magnetosphere of B, Breton et al. (2008) constrained the
geometrical parameters to be α = 70.9(4)◦ and θ = 130.0(4)◦.4

Here, α is the misalignment of the magnetic axis with respect
to the spin axis and θ is the colatitude of the spin axis.
Unfortunately, B shows very little radio polarization, making
it impossible to constrain the geometry from polarization
measurements (Demorest et al. 2004). Breton et al. (2008) also
constrained the precessional phase of the spin axis, measured
from our line of sight, to be φprec = 51.2(8)◦ at an epoch of
2006 May 2 (i.e., MJD 53857) and found that this phase is
changing with time at a rate of 4.8(7)◦ yr−1. This is consistent
with the rate of 5.061(2)◦ yr−1 predicted by general relativity
(Barker & O’Connell 1975). Recently, Perera et al. (2010)
analyzed the pulse profile evolution of B and independently
determined the above angles using a simple model based on
geodetic spin precession as proposed by Clifton & Weisberg
(2008). According to this model, the beam must be elliptical
and horse-shoe shaped in order to explain the observed single-
to double-peak pulse profile evolution and the disappearance of
radio emission. The estimations of the above angles in this
model are consistent with those predicted by Breton et al.
(2008), within the 2σ errors. From these studies, we believe
that the geometrical parameters of B are well known. We can
therefore use these values in this paper to determine the emission
geometry.

In this paper, we also explore the distortion of the magneto-
sphere of B. The almost edge-on orbital plane of the system,
with inclination angle of 88.◦7 (Kramer et al. 2006), allows us
to observe the eclipses of A with a duration of about 30 s. By
considering the relative transverse velocities of the two pulsars,
660 km s−1 (Lyne et al. 2004), the estimated size of B’s magneto-
sphere is about 10% of its light cylinder radius of ∼1.3×1010 cm.

4 Here, and throughout the paper, the number in parentheses is the 1σ
uncertainty in the last quoted digit.
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This implies that the wind of A compresses the magnetosphere
of B and disturbs its polar cap (Lyutikov 2004). This is due to
the small separation of the pulsars (∼9 × 1010 cm or 2.9 lt-s)
and the large spin-down luminosity of A (5.8 × 1033 ergs−1)
compared with B (1.6 × 1030 ergs−1). This is analogous to the
distortion of Earth’s magnetosphere due to the solar wind. This
interaction also results in an orbital modulation of B; we detect
bright emission from the pulsar only in two orbital phase regions
of 185◦–235◦ (hereafter BP1) and 265◦–305◦ (hereafter BP2),
and detect weak emission at phases of 340◦–30◦ and 80◦–130◦
(here, and throughout the paper, orbital phases are measured
from the ascending node). Lyutikov (2005) claims that the pul-
sar has the same intrinsic radio intensity throughout the orbit
and that the orbital modulation is due to the deflection of the
magnetic polar field line with respect to the line of sight because
of the influence of A.

The wind interaction with the magnetosphere of B produces
a bow shock between A and B; this is likely the boundary of
the magnetosphere of B. The shape of this boundary depends
on the orientation of the magnetic axis of B. Lyutikov (2004)
constrained the stand-off distance, or the distance from B to the
vertex of the bow shock, to be 3.5 × 109 cm if the bow shock
interface is a perfect resistor and 4 × 109 cm if it is partially
resistive. These estimates inferred that the magnetosphere of B
is located deep within its light cylinder and the open and closed
field lines have a more complicated structure than that of an
isolated pulsar. Since the wind-interaction boundary model is
very important to study the emission geometry of B, we derive
it again in this paper with some improvements. This model
describes the shape of the boundary for any orientation of the
magnetic axis and allows us to model the open and closed field
line structures more accurately.

This results in a method to use the derived field line structure
to estimate the radio emission heights of B. Since the bow shock
boundary is located deep inside the light cylinder, the correction
due to rotation on the static dipole field, which introduced in
retarded dipole field, is small (for retarded dipole field, refer
Appendix A of Dyks & Harding 2004). Therefore we assume
non-rotating dipole field throughout the model. In our method,
we assume that the emission comes from the direction tangential
to the local field lines. We also assume that the emission comes
from above the polar cap region, consistent with the narrow
single- and double-peaked radio profiles.

The distortion of Earth’s magnetosphere due to the solar wind
has been studied using a large number of satellite observations
and these data have been extensively modeled. Since the wind
of A distorts B’s magnetosphere in the same way that the
solar wind does Earth’s, some models for Earth’s magnetic
field line structure can be used to study the distortion of the
magnetosphere of B and to determine the regions of radio
emission. We use the Dungey (1961) planetary magnetosphere
model and the Tsyganenko (2002a, 2002b) Earth magnetosphere
models to set an upper limit on the radio emission height of B.

We present our observational data in Section 2 and discuss
observed mean pulse profiles. In Section 3, we explain the
boundary model that describes the shape of the bow shock.
Then we trace the dipole field lines and transform them from
the corotating frame of the NS to the orbit-fixed frame. In order
to derive the required angular radius of the elliptical beam for
the emission height calculation, we re-analyze the beam with
a different geometrical framework in Section 4. In Section 5,
we present the method that we use to estimate the minimum
emission height and our results. In Section 6, we describe

the maximum emission height calculation using two different
magnetosphere models. Finally in Section 7, we discuss our
results and compare them with predicted emission heights for
other pulsars. We also discuss height estimations from other
methods, concluding that these are not applicable to pulsar B.

2. OBSERVATIONS AND PULSE PROFILES

We observed J0737–3039B with the 100 m Green Bank
Telescope (GBT) in West Virginia since 2003 December 24
at multiple frequencies. Since 820 MHz is the most common,
we use only those data in this analysis. This is the same data set
that we reported in Perera et al. (2010). However, we use better
time resolution pulse profiles in this analysis compared with the
previous paper. The data were taken using the GBT spectrometer
SPIGOT with sampling time of 81.92 μs until 2009 January.
After 2009 January, the spectrometer GUPPI was used with a
sampling time of 61.44 μs. All the data were dedispersed and
folded using the pulsar analysis package SIGPROC, assuming
a dispersion measure of 48.914 cm−3 pc (Lyne et al. 2004). The
ephemeris of Lyne et al. (2004) was used until 2006 and since
then we have used the ephemeris of Kramer et al. (2006) to form
mean pulse profiles.

The mean pulse profiles for BP1 are shown in Figure 1. We
aligned the peak of the profiles to the pulse phase of 0.5 at each
epoch. Note that these pulse profiles have a better resolution than
those in Perera et al. (2010). The second peak of the pulse profile
can be hidden with the low time resolution. Therefore, we use
1024 bins across the full pulse phase, resulting in an effective
time resolution of 0.003 s in this analysis compared with 0.01 s
in Perera et al. (2010). For example, the second peak of the
pulse profile of MJD 53860 around pulse phase 0.52 in Figure 1
cannot be clearly seen in Figure 1 of Perera et al. (2010) on the
same day with low time resolution. We use the pulse profiles
from 23 days in Section 4, including 16 epochs in Figure 1, in
order to derive the beam shape. We include some low signal-to-
noise data (e.g., MJD 53481) in this particular analysis because
the second peak became apparent around those days. Because
these profiles appeared as single peaked, we ignored them in
the geometrical modeling of the previous lower time resolution
study. As in Perera et al. (2010), we fit one and two Gaussians
for each single- and double-peaked pulse profile, respectively,
and then calculate profile widths at different intensity levels.
We use these data in Section 4 to determine the geometry of the
pulsar and the beam.

3. BOUNDARY MODEL

Due to the distortion of the magnetosphere, the properties of
pulsar B are different from those of normal isolated pulsars. In
isolated pulsars, we can determine the size of the magnetosphere
by modeling the open and closed field lines, given the size
of their light cylinder. However, as mentioned earlier, the
magnetosphere of B is located deep inside the light cylinder
and the structure of the open and closed field lines is more
complicated due to the distortion from A’s wind.

In the first step, we approximate the structure of the magne-
tosphere as a rotating vacuum dipole. Then we apply a simple
model for the wind-magnetosphere interaction, as in Lyutikov
(2004). The wind of A creates a dynamic pressure on the mag-
netosphere of B. The magnetosphere of B creates a magnetic
pressure that opposes the wind pressure of A. At some point,
these two pressures equal each other; this interface is likely the
boundary of the magnetosphere of B. This boundary can be used
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Figure 1. Mean pulse profiles for BP1 on 16 different days including the very first observation which was made on 2003 December 24 (MJD 52997). All data have
been observed at a frequency of 820 MHz. There are 1024 bins across the entire pulse profile, resulting an effective time resolution of 0.003 s. Since predictions of
absolute pulse phase are not available for these observations, we aligned the maximum peak to the pulse phase of 0.5 at each epoch. The horizontal and dotted lines
show the baseline, or off-pulse mean, of the profile and the standard deviation of the off-peak region, respectively. The signal-to-noise ratio (S/N) of pulse profiles has
decreased significantly from 284 (on MJD 52997) to 11 (on MJD 54552).

to calculate the last open and closed field lines. We derive an
expression for this boundary by equating the two pressures,

−→
B

2
(−→rB )/(8π ) = LA cos2(γ )/4πc−→rA

2
, (1)

where −→rB is the distance vector of the boundary with respect
to pulsar B,

−→
B (−→rB ) is the magnetic field of pulsar B at −→rB , LA

is the spin-down luminosity of A, −→rA is the distance vector of
the boundary with respect to A, and γ is the angle between
the normal to the boundary and −→rA (see Figure 2). The relative
pressures lead to a boundary much closer to B. For that reason
we simplify the problem by setting the distance of the boundary
with respect to A equal to the distance between the two pulsars
and γ equal to the angle between the normal to the boundary and
the line connecting two pulsars. By assuming a magnetic dipole
at the center of the coordinate system, we can write the magnetic
field strength of the NS as

−→
B (−→rB ) = (3r̂B(−→m · r̂B) − −→m )/rB

3,
where −→m = m(cos δ cos Ωt, cos δ sin Ωt, sin δ) is the magnetic
moment, Ω is the rotational angular frequency, and δ is the angle
between the magnetic moment and the line connecting the two
pulsars (see Figure 2).

In isolated pulsars, we believe that the spin-down is caused by
the power carried out along the magnetic field lines that are open
with respect to the light cylinder (Contopoulos & Spitkovsky
2006). These open magnetic field lines start from the polar cap
region of the NS surface and their shape changes with respect to
the magnetic inclination. Spitkovsky (2006) proposed a realistic
form of the spin-down luminosity of an isolated pulsar as a
function of the magnetic inclination angle. However, the open
field line structure of pulsar B is somewhat different than that for
an isolated pulsar and, therefore, we need to define the magnetic
field lines with respect to the bow shock boundary. Therefore,
we modified the spin-down luminosity equation that is given in
Spitkovsky (2006) by including the area of the polar cap region.
This can be written as

LB = Ω2B2
0S2(1 + sin2 α)/4π2c, (2)

where Ω is the rotational angular frequency, B0 is the polar
magnetic field of pulsar B, S is the area of the polar cap region,
and α is the magnetic inclination. As we mentioned earlier,
with previous geometry models (Breton et al. 2008; Perera et al.
2010), α is taken to be ∼70◦. Note that the original version of
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rA

−Yp

rB
m̂

Pulsar B
Pulsar A

Bow shock
boundary

towards
Wind

D

pZ

Xp

γ

δ

pulsar B

Figure 2. Geometry of the wind-magnetosphere interaction model. Pulsar A
is located at a distance D (∼9 × 1010 cm) away from B along the xp-axis.
The wind of A comes along the −xp direction and is shocked near B. The
physical interface has the shape of a bow shock and this is the boundary of the
magnetosphere of B. �rB is the position vector at any point on the interface with
respect to B. �rA is the position vector of this point with respect to A and γ is
the angle between the normal to the boundary at this point and �rA. δ is the angle
between the magnetic moment axis m̂ and the line connecting the two pulsars.

the equation (as in Spitkovsky 2006) can be obtained by taking
S to be the area of the polar cap of a dipole as defined by the
open magnetic field lines with respect to the light cylinder.

In order to determine the boundary, we solve Equation (1)
numerically and then use Equation (2) to determine the value of
the magnetic field. To do so, we simplified the problem to a two-
dimensional form in which the bow shock is represented by an
equation involving xp and zp and lies on that plane. The equation
of the bow shock then has the form G(xp, zp) = f (zp) − xp,
which must be solved in order to determine the shape of the bow
shock. Let the radial vector �rB = f (zp)x̂p + zẑp and the vector
normal to the boundary �n = �∇ ·G(xp, zp). Then the dot product
of these two gives the angle cos2(γ ) = 1/(1 + (df/dzp)2)
and this can be substituted in Equation (1). According to our
two-dimensional form, we can write the magnetic moment
�m = m cos δx̂p + m sin δẑp and then derive the magnetic field
of B at distance �rB, �B( �rB), as a function of m, f (zp), z, and δ.
Then Equation (1) reduces to a first-order differential equation
of f (zp) and the solution determines the shape of the bow shock.
First we assume an initial value for the magnetic moment, m, of
B with a possible magnetic orientation, δ, and solve the problem
to determine the shape of the bow shock. Then we find which
are the last closed field lines defined with respect to the bow
shock and finally the shape and the area of the polar cap.

We repeat the procedure for 16 values of the angle δ between
the magnetic moment and the line connecting the two pulsars,
evenly spaced between 0 and π/2, and we find the area of the
polar cap for each of those orientations. In the estimation of the
average area of the polar cap, we have weighted appropriately
the fact that some values of δ occur more frequently than others
during an orbital period. Using the spin-down luminosity given
in Equation (2) with the timing-derived LB, we find a new value
for the magnetic field. We repeat this process with this new
magnetic field until the value of the magnetic field converges.
This happens after five to ten iterations for an initial guess of
the magnetic field within a couple of orders of magnitude away
from the convergence value. In order to represent the three-
dimensional version of the bow shock, we assume that it is
axially symmetric around xp.

According to the best solution, the magnetic field of B
is constrained to be BB = 6.4 × 1011 G, which is about a
factor of two lower than the timing-derived value 1.2 × 1012 G
assuming a vacuum dipole with a magnetic inclination of 90◦
(Lyne et al. 2004). This new estimate is more realistic as it
accounts for the boundary of the magnetosphere as the bow
shock and a realistic magnetic inclination. The stand-off distance
is constrained to be either 3.8 × 109 cm or 4.5 × 109 cm for
the cases when the magnetic axis is either normal or parallel
to the line connecting the two pulsars, respectively. Thus, the
size of the boundary depends on the orientation of the magnetic
axis of pulsar B. Moreover, the shape of the bow shock depends
on the orientation of the magnetic axis. The stand-off distance
corresponds approximately to 1/3 of the light cylinder, thus for
these distances the relativistic modifications are minimal and
do not change the value of the stand-off distance by more than
a few percent. For that reason we have chosen to calculate it
using a vacuum dipole model rather than a more complicated
geometry that takes into account relativistic effects as in Deutsch
(1955). For simplicity, we assume that the boundary is axially
symmetric around the vector connecting the two pulsars. A
maximum deviation of roughly 20% of the actual shape from
the symmetric case occurs when the angle δ is 90◦. Therefore,
the shape of the boundary is sensitive to an angle of δ, having
a range of [0◦, 90◦]. If the angle δ is greater than 90◦, then the
boundary considered the effective δ of 180◦ − δ. For example,
if δ is 100◦, then the effective δ for the boundary shape is 80◦.
Therefore, with the assumption that the magnetic axis is nearly
aligned with the line of sight at the radio emission detection,
the effective angle δ is small (∼5◦–35◦) in the orbital longitude
region of BP2. Thus, the deviation of the boundary model from
the actual geometry of the boundary is small and the assumption
of a symmetric geometry is reasonable. However, the deviation
in the orbital phase region of BP1 is significant due to large
effective angles of δ (∼35◦–85◦).

To derive an expression for the physical shape of the bound-
ary, we examine different shapes that fit our results. As a pre-
liminary fit, a parabola is a good guess, but a fourth-order poly-
nomial describes the boundary better, yielding the minimum
chi-squared value when we fit to our results. The coefficients of
this polynomial describe the variation and are functions of the
angle δ. The best-fit polynomial is

xp = a(δ) + b(δ)
(
y2

p + z2
p

)
+ c(δ)

(
y2

p + z2
p

)2
, (3)

with a B-centered coordinate system in which the xp-axis
is toward A, the zp-axis is normal to the orbital plane, and
the yp-axis completes the right-handed coordinate system (see
Figure 2). The three axes have units in centimeters. The
coefficients a(δ), b(δ), and c(δ) are

a(δ) =
(

0.83 − 0.01δ − 0.06δ2 − 0.05δ3 + 0.03δ4

1.83 × 10−10

)

b(δ) =
(−0.46 + 0.04δ − 1.43δ2 + 1.96δ3 − 0.64δ4

5.45 × 109

)
(4)

c(δ) =
(−0.48 − 0.03δ + 2.15δ2 − 2.47δ3 + 0.74δ4

1.62 × 1029

)
,

where the angle δ is in radians and having a range of [0, π/2].
Since they are functions of δ, the boundary changes slightly with
spin and orbital motions, as well as over time due to precession.

This boundary model is valid only up to 5 × 109 cm or
∼40% of the light cylinder radius, from B. Beyond this limit,
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Figure 3. Cartesian coordinate systems that transform magnetic field lines from the corotating frame of the neutron star to the orbit-fixed frame. (a) The spin phase
φspin and the misalignment of the magnetic axis α are defined in the frame (xs, ys, zs). The spin phase is measured from the xs-axis. Therefore φspin = 0 is defined when
the magnetic axis is in the xs–zs plane. (b) The colatitude of the spin θ and the precessional phase φprec is defined in the frame (xo, yo, zo). In this frame, the xo-axis
is in the plane of the zo-axis and our line of sight (LOS). The spin precession φprec is measured from the xo-axis. The frame of the bow shock boundary (xp, yp, zp)
is then placed in this orbit-fixed frame with zp ‖ zo and rotate with an angle of ψ defined from the xo-axis. Then the orbital phase is defined φorb = ψ + 90◦ as it
measures from the ascending node. io = 90◦ − i, where i is the orbital inclination.

the physical assumption of the dynamical pressure is incorrect
because the wind pressure on the magnetic field should be zero
when it is parallel to the boundary at large distances. Also we
have assumed an undistorted magnetic field of B in the model
and the distortions at large distances will be significant.

In summary, we determined the boundary of pulsar B by
assuming equilibrium between the dynamical pressure of the
wind of A and the magnetic pressure of the field of B.
The physical shape of the boundary is a bow shock and
mathematically we can represent it as a fourth-order polynomial.
Moreover, this shape depends on the orientation of the magnetic
moment axis with respect to pulsar A. Thus, the coefficients of
the best-fit polynomial depend on this orientation.

3.1. Tracing the Dipole Field Lines

Due to the wind interaction with the magnetosphere of B, it is
complicated to understand the structure of the open and closed
field lines. To determine the polar cap region that is required
for the emission height estimation, we calculate the last closed
field lines by tracing them referring to the derived boundary
model.

As is standard, we treat the magnetosphere of B as a magnetic
dipole. For an isolated pulsar, the last closed magnetic field lines
are defined as those that just touch the light cylinder and the ones
interior to the last closed field lines are considered open field
lines. In our case the boundary is not the light cylinder but the
bow shock, with the last closed field lines defined as those that
just touch this bow shock. The polar cap region is defined by
these particular field lines and the shape of it can be determined
by the locations where these field lines cross the NS surface.
Defining the polar cap is important since we think that the radio
emission is produced above this region.

Unlike those of isolated pulsars, the magnetosphere of B is
not symmetric around the magnetic axis due to the shape of the
boundary. This can be clearly seen by tracing the last closed
field lines. In order to trace the field lines, we use the dipole

field line equation in polar coordinates

r = r0 sin2(λ)

φ = φ0, (5)

where r is the radial distance to a given point along the field line
and r0 is the field-line constant, or equatorial distance of the field
line from the magnetic axis. The angle λ is the colatitude of a
given point along the field line and φ0 is the azimuth angle, or the
longitude of the given field line. Then the Cartesian components
of a particular field line are written as

x = r sin(λ) cos(φ)

y = r sin(λ) sin(φ) (6)

z = r cos(λ),

where the z-axis of the coordinate system is aligned with the
magnetic moment axis and the other two axes are corotating
with the NS.

To include the misalignment of the magnetic axis and also
account for the spin phase, we transform Equation (6) to another
frame where the z-axis is aligned with the spin axis. In this frame
(see Figure 3(a)), the Cartesian components are

xs = x cos α cos φspin − y sin φspin + z sin α cos φspin

ys = x cos α sin φspin + y cos φspin + z sin α sin φspin (7)

zs = z cos α − x sin α,

where α is the angle between the magnetic axis and the spin
axis and φspin is the spin phase. We measure the spin phase from
the xs-axis, which means that it is zero when the magnetic axis
is in the xs–zs plane.

The spin axis is also associated with the colatitude angle and
the spin precessional phase. Geodetic spin precession changes
the orientation of the spin axis with respect to our line of sight.
In order to include the colatitude of the spin axis and effects of

5
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Figure 4. Confined rotating vacuum dipole in the boundary model on MJD 54050 (2006 November 11)—a view in the xp–zp plane (left) and a view in the xp–yp
plane (right). Pulsar B is located at the center of the coordinate system and the wind of A comes toward the −xp direction. The dashed line shows the derived bow
shock from the wind-magnetosphere interaction model and this models the open and closed field lines of the magnetosphere. The solid lines are the last closed field
lines with respect to this boundary. The field lines that have higher latitude than these shown closed field lines are considered open field lines. The scale is in units of
109 cm. Here, α = 61◦ and θ = 138.◦5; these are our best-fit geometrical parameters from Section 4. This view corresponds to the orbital phase of 223◦. Note, for
clarity of plots, that we take the spin phase as zero, so that the north pole of the pulsar is pointing below the zp = 0 plane. However, the shape of the magnetosphere
changes with the spin and orbital motion and over time due to precession.

spin precession, we transform a particular field line to another
frame that is fixed with our line of sight. We choose the frame
with the z-axis parallel to the orbital angular momentum axis
and the x-axis in the plane of the z-axis and the line of sight (see
Figure 3(b)). The Cartesian components in this frame are

xo = xs cos θ cos φprec(t) − ys sin φprec(t) + zs sin θ cos φprec(t)

yo = xs cos θ sin φprec(t) + ys cos φprec(t) + zs sin θ sin φprec(t)

zo = zs cos θ − xs sin θ, (8)

where θ is the angle between the spin axis and the orbital
angular momentum axis and φprec(t) is the spin precession phase
measured from the x-axis (i.e., φprec(t) = 0 when the spin axis
is in the plane of xo–yo). The spin precession phase is given by

φprec(t) = Ωprec(t − T0), (9)

where Ωprec is the spin precession rate of B, which is
5.061(2)◦ yr−1, and T0 is the time when the φprec(t) is zero,
defined as the time when the spin axis is in the xo–yo plane.
By using the above set of equations, we can transform dipole
field lines from the corotating frame of the NS to the orbit-
fixed frame (xo, yo, zo) where the xo–yo plane is in the orbital
plane and xo sin(i) is pointing toward the observer, where i is
the orbital inclination.

In order to place the polynomial boundary in the (xo, yo, zo)
frame, we need to account for the orbital motion of B. Due
to this motion, the orientation of the boundary changes with
respect to our line of sight, because the location of A changes
with respect to B. This relative motion changes the shape
of the magnetosphere of B with respect to the line of sight
and then the shape of the polar cap region. This results a
variation in the emission height estimate across the orbit (more
details are given in Section 5). We place the boundary model
(xp, yp, zp) in this orbit-fixed coordinate frame with zo ‖ zp
and then rotate it corresponding to the orbital phase φorb
with (xp cos φorb −yp sin φorb, xp sin φorb +yp sin φorb, zp), where
φorb = ψ+90◦ (see Figure 3(b)). Here, φorb is measured from the
ascending node and ψ is the rotation angle between the xo and xp
axes. Note that this 90◦ angle is included to convert the rotation
angle ψ to orbital phase φorb as measured from the ascending

node. Then we trace the last closed field lines according to
the orientation of the boundary for the given orbital phase. For
example, Figure 4 shows the confined magnetosphere in the
boundary model with the last closed field lines on MJD 54050
(2006 November 11). Here, we use our best-fit geometry of the
pulsar from the beaming model that is described in Section 4. At
this particular epoch, the spin precession phase is φprec = 46◦
and we use the orbital phase φorb = 223◦ and the spin phase
φspin = 0 in the figure. Note that, at this spin and the orbital
phases, the spin axis of the pulsar is in the xp–zp plane.

The spin of the magnetic axis also results in a change in
the shape of the magnetosphere due to the misalignment of the
magnetic moment. However, the most important orientation of
the magnetic axis is when it reaches the closest approach to
our line of sight (i.e., where we detect the emission). In order
to measure the point of this closest approach, or the impact
parameter β(t), we use the equations

cos ζ (t) = sin θ cos φprec(t) sin i + cos θ cos i

β(t) = ζ (t) − α. (10)

Here, ζ (t) is the angle between the spin axis and our line of sight
at a given time and the other angles have the usual meaning.
We calculate the spin phase that gives this particular closest
approach, so that we can estimate the emission height only at
this particular spin phase.

Now we can transform field lines from the corotating frame of
the NS to the orbit-fixed frame. By using the boundary model, we
can trace the last closed field lines, which determine the shape of
the magnetosphere. Due to different orientations of the magnetic
axis with spin, the shape of the magnetosphere with respect to
our line of sight changes, but we are interested only in the spin
phase that gives the closest approach to us. Nevertheless, orbital
motion and spin precession change the shape and we need to
account for these in emission height calculation.

4. RE-ANALYSIS OF THE BEAM SHAPE

For the emission height calculation, we require the angular
radius of the emission beam. Perera et al. (2010) claimed the
beam shape of B to be elliptical by modifying the Clifton &
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Figure 5. Elliptical emission cone in the frame (xs, ys, zs). The magnetic axis
of the beam represents with m̂ and it is misaligned with the spin axis of an
angle α. The trajectory of the line of sight across the beam due to rotation is
denoted with DBE. The angle BÔD is the longitudinal angular radius ρl,j (t)
of the beam for a given intensity level at a given time. The angle AÔC is the
angular radius across the semimajor axis of the beam ρa,j for a given intensity
level, which is time independent and fixed for the beam. The angle AÔD is the
effective angular radius of the beam ρe,j (t) for a given intensity level.

Weisberg (2008) geometrical framework. The model in Perera
et al. (2010) used the two-dimensional geometry of the beam
after projecting it to a plane which is perpendicular to the spin
axis, resulting in a projected angular radius. We improve this
model by using a more realistic three-dimensional model in this
paper in order to determine the actual angular radius.

The angular radius of a circular emission beam has been
calculated using pulse profile widths and an assumed emission
geometry (Gil et al. 1984). Since Perera et al. (2010) showed
that the shape of B’s beam is not circular, we attempt to
derive an approximate equation for an elliptical beam in three-
dimensional and then follow the same analysis of Perera et al.
(2010) in order to determine the geometry. First, we construct the
beam with a set of coaxial hollow cones representing different
intensity levels in a way such that the outermost one represents
the lowest intensity level and then the intensity increases
gradually inward toward the maximum and then decreases until
reaching the center of the beam. All these cones have cross
sections with a constant ellipticity of aj/bj , where aj and bj are
semimajor and semiminor axes, respectively, of each hollow-
cone beam. Then, for any given longitudinal angular radius
ρl,j (t) (see Figure 5), magnetic misalignment angle α, and
impact parameter β(t), the pulse profile width wj (t) can be
derived from spherical trigonometry (i.e., from spherical triangle
FBD in Figure 5) as follows:

wj (t) = 2 arccos

(
cos(ρl,j (t)) − cos2(α + β(t))

sin2(α + β(t))

)
, (11)

where subscript j specifies different intensity levels of the pulse
profile. Note that ρl,j (t) is time dependent because the region
where our line of sight cuts the beam is changing with time due
to precession. In order to relate ρl,j (t) with the elliptical beam
shape, we derive an equation with the assumption that the cross-
section of the beam is small enough to use one-dimensional
trigonometry. Then the longitudinal angular radius ρl,j (t) can

be given as a function of β(t),

ρl,j (t) = 1

χ

√
sin2(ρa,j ) − cos2(ρa,j ) tan2(β(t)), (12)

where ρa,j is the angular radius across the semimajor axis
of the beam (see Figure 5) for a given intensity level and
χ = aj/bj , which is a constant for all different intensity
cones. This expression shows that the minimum ρl,j (t) of zero
occurs when the line of sight just encounters the beam (i.e.,
β(t) = ρa,j ), resulting in wj (t) = 0. The maximum ρl,j (t)
occurs when the line of sight crosses the center of the beam
(i.e., β(t) = 0), which leads to the maximum wj (t). Therefore,
by combining Equations (11) and (12) for a given α, β(t), and
ρa,j , we can calculate the pulse profile width wj (t) for any given
intensity level.

In order to determine the geometry of B, we fit the model-
predicted pulse profile widths to observed pulse profile widths
of BP1 at different intensity levels using the same likelihood
analysis that was described in Perera et al. (2010). The fit
was done by searching the entire parameter space of α, θ , χ ,
and T0. For each combination of these parameters, we vary
ρa,j from 0◦ to 30◦ freely until we reach the best solution.
Then we use a maximum likelihood analysis to determine the
best-fit geometrical parameters. The best-fit model for BP1
is shown in Figure 6. The estimated geometrical parameters
α = 61.◦0+7.◦9

−2.◦4
and θ = 138.◦5+5.◦3

−4.◦4
are consistent with those

in Perera et al. (2010) and Breton et al. (2008) within the
2σ errors. The ratio χ is constrained to be 2.6+0.4

−0.6, lower
than the estimate of the previous paper. Our new estimate is
more believable because it has been derived from a full three-
dimensional viewing model. In addition to these parameters,
we derive T0 to be MJD 57399+4

−25 (2016 January 12), which
results in a precessional phase of 46◦ at an epoch of MJD 54050
(2006 November 11). This estimate is consistent with the value
predicted by Breton et al. (2008) at the same epoch. However,
this is a somewhat arbitrary parameter that can be chosen from
our best-fit model. Note that the best-fit T0 in Perera et al.
(2010) is about MJD 33360 (1950 March 20), which results in a
precessional phase of 73◦ at an epoch of MJD 54050. These two
best-fit φprec result in a shift of the hour-glass two-dimensional
pulse profile shape along the precessional phase or time axis (see
Figure 6 of this analysis and Figure 17 of Perera et al. 2010).

The angular radius across the semimajor axis of the beam at
the maximum intensity level ρa,100 and 10% of the maximum
ρa,10 are constrained to be 9.◦9 and 14.◦3, respectively. In order
to determine the effective angular radius of the beam (more
details are given in Section 5), we use these angular radii with
the derived beam geometry.

For emission height estimates for normal non-precessing
pulsars, a beam shape is not essential because our line of
sight always observes the same section of the emission beam.
However, for precessing pulsars, we must consider a beam shape
in order to determine the emission height due to observing
different sections of the emission beam. Therefore, in this
particular case, we use our derived elliptical beam shape with
the best-fit geometrical parameters of B to estimate emission
heights in Section 5. As we see in Perera et al. (2010), the pulse
profile evolution is somewhat similar in both bright phases.
Therefore, we use the above best-fit beam parameters from BP1
in our emission height estimates for both bright phases.

Perera et al. (2010) reported that the radio emission of B
disappeared in 2008 March, because the line of sight precessed

7



The Astrophysical Journal, 750:130 (17pp), 2012 May 10 Perera et al.

Figure 6. Two-dimensional pulse profile of the orbital longitude region 185◦–235◦ (BP1), assuming the elliptical hollow-cone beam. The best-fit geometrical parameters

are α = 61.◦0+7.◦9
−2.◦4

, θ = 138.◦5+5.◦3
−4.◦4

, and χ = 2.6+0.4
−0.6 (errors are 1σ ). The corresponding T0 is MJD 57399 (2006 November 11), which is the time where the spin axis

of the pulsar is in the plane of our line of sight and the orbital angular momentum axis. Note that these α and θ values are consistent with previous results (Perera
et al. 2010; Breton et al. 2008). The dots are the widths at equal intensity levels of the observed pulse profile. Each horizontal row of dots represents an observation
at a given epoch. Equal-intensity contours are the elliptical beam model-predicted pulse profile widths at different intensities. The intensity increases from the inner
dashed line outward until the first solid line, which is the intensity of the peak, and then decreases outward again. The intensity levels are, from the inner dashed line,
80%, 90%, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10%. The vertical axis is calibrated in years and can also be considered the spin precession phase.
Note that this figure shows the emission from the full elliptical beam. If the beam is partially filled according to 2008 radio disappearance, then the model predicts no
radio pulse profiles from 2008 to 2024.

away from the partially radio-filled elliptical beam. According
to the same argument that the beam is not entirely radio loud,
we can explain the radio disappearance with our new elliptical
beam geometry. With the partially filled beam configuration, we
can predict the reappearance of the radio emission as our line
of sight precess back to the radio loud region of the beam. With
the model described in Perera et al. (2010), the reappearance
is predicted to occur in around 2035 with the same part of
the beam or in around 2014 if the beam has two symmetric
radio-filled portions. However, our new model describes that the
reappearance is predicted to occur in around 2024 with the same
part of the beam. Therefore, Figure 6 changes with the partially
filled horse-shoe beam to non-detectable emission from 2008 to
2024. If our new beam model is correct, then the beam should not
have two symmetric radio-filled parts, because our line of sight
crossed around the center of the beam when the disappearance
occurred in 2008. Therefore, if there are two symmetric parts,
then we would be able to detect radio emission at present day.
The two different predictions for the reappearance from the two
models mainly occur due to two different best-fit T0 values.
These two different T0 values give two different solutions for
the geometry of B, however, the best-fit values for parameters α
and θ are the same for the two models with the 2σ uncertainty.

5. EMISSION HEIGHT CALCULATION

In order to estimate the radio emission heights of pulsar B,
we use the previously defined boundary model, the field line
tracing technique, and the modeled geometry of the beam. As
we mentioned earlier, we assume that the radio emission is

produced above the polar cap region and originates tangential
to the local magnetic field lines.

First, we need to determine the boundary of the polar cap
region, given by the last closed field lines. This can be done
by tracing the field lines with the derived boundary model as
described in Section 3.1. We assume that the radio emission
comes from above the entire polar cap region, so that the outer
edge of the pulse profile (i.e., 10% of the maximum intensity)
corresponds to the region between the open and closed field
lines, approximately equal to the last closed field line. Then we
determine the emission height that originates from these last
closed field lines.

In order to determine the tangent to a particular last closed
field line at a given moment, we rewrite the coordinate trans-
formations in Section 3.1 in matrix form (see, e.g., Gangadhara
2004), so that it is easy to evaluate the equations relevant for
our calculation. First, we write the dipole field equation in the
corotating frame of the NS as

−→rcor = r0(sin3 λ cos φ, sin3 λ sin φ, sin2 λ cos λ). (13)

We then transform it to the orbit-fixed frame

−→rorb = A · B · −→rcor, (14)

where

A =
(

cos α cos φspin − sin φspin sin α cos φspin
cos α sin φspin cos φspin sin α sin φspin

− sin α 0 cos α

)
(15)

8
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and

B =
(

cos θ cos φprec − sin φprec sin θ cos φprec
cos θ sin φprec cos φprec sin θ sin φprec

− sin θ 0 cos θ

)
. (16)

For the detection of radio emission, our line of sight must be
parallel to the tangential vector of the given field line at a
particular point. By locating this point on the field line, we
can determine the height of the radio emission. To evaluate the
tangent to the field line, we take −→rt = ∂−→rorb/∂λ. Then the unit
vector along the tangential direction (r̂t = −→rt /|−→rt |) can be
written as

r̂t = A · B ·
√

2

5 + 3 cos(2λ)

⎛
⎝3 cos φ sin λ cos λ

3 sin φ sin λ cos λ

2 cos2 λ − sin2 λ

⎞
⎠ . (17)

The direction of the magnetic moment axis in the orbit-fixed
frame can be written as

m̂ = A · B · ẑo. (18)

Then we evaluate the angle between the direction of the
magnetic moment axis and the vector tangential to the field
line (τ ) at any time through the expression

cos(τ ) = r̂t · m̂ = 1 + 3 cos(2λ)√
10 + 6 cos(2λ)

. (19)

This is the same as Equation (8) in Gangadhara (2004). At the
point of detection of radio emission, we take the angle τ to be
equal to the effective angular radius of the previously derived
emission beam at the given time. According to our assumption
that the outer edge of the pulse profile (10% maximum) comes
from the last closed field line, we take τ ≈ ρe,10(t), where
ρe,10(t) is the effective angular radius of the beam (angle
AÔD of Figure 5) at the 10% of the maximum intensity level
corresponding to a particular impact parameter β(t). We can
derive an equation for ρe,10(t) by using the spherical triangle
FAD of Figure 5 as

cos(ρe,10(t)) = cos(α) cos(α + β(t))

+ sin(α) sin(α + β(t)) cos(w10(t)/2). (20)

Here, w10(t), the model-estimated pulse width, can be found
through Equations (11) and (12) with the best-fit parameters
α, θ , χ , and ρa,10. The impact parameter β(t) for the given
time can be determined through Equations (9) and (10) with
the best-fit T0. This w10(t) is simply the 10% pulse width
of the two-dimensional pulse profile given in Figure 6 at the
given time. By simplifying Equation (19), we find an expression
for λ, which is the colatitude of the emission point. This
expression can be written as

cos(2λ) = 1

3
[cos(ρe,10(t))

√
8 + cos2(ρe,10(t)) − sin2(ρe,10(t))].

(21)
This is same as Equation (9) in Gangadhara (2004), so that
the colatitude angle of the emission point in our complicated
geometry is simplified to that of an isolated pulsar. Then the
emission height of this point can be calculated by using the first
equation of (5). However, determining the field line constant,
r0, in this equation is difficult due to the bow shock boundary
and its variation. Kijak & Gil (1997) assumed that this r0 is the

light cylinder radius since the isolated pulsars that they have
studied have low magnetic inclinations. To determine r0 for our
particular case, we trace the last closed field line that is tangent to
our line of sight at the closest approach of the magnetic moment
with respect to the bow shock boundary. Then we use the dipole
field equation to estimate the emission height.

The orientation of the bow shock changes across the orbit
with respect to our line of sight at the closest approach, so that
the emission height changes with orbital longitude, because the
last closed field lines are defined with respect to the bow shock.
Moreover, when the central part of the radio beam crosses our
line of sight, we will detect a double-peaked profile since the two
edges, leading and trailing, of the beam cross our line of sight.
Thus due to the different orientation of the magnetic moment
axis at these two edges with respect to us, our line of sight is
tangent to two different last closed field lines which have two
different r0 values. Thus, the height of the emission produced by
the leading and trailing edges of the beam are different. This is
shown in Figure 7. For example, the emission heights produced
by the leading components of the beam are constrained to be in
a range of [24 ± 8,31 ± 10] and [20 ± 6,21 ± 7] in NS radii
(10 km) on MJD 54050 (2006 November 11) for BP1 and BP2,
respectively. The heights of the trailing edge of the beam in BP1
and BP2 are constrained to be in a range of [15 ± 5,19 ± 6]
and [21 ± 7,38 ± 12] in NS radii, respectively. The errors of the
height estimates are calculated from the 1σ uncertainties of the
best-fit geometrical parameters from the beaming model. Thus,
the uncertainty of the height estimate is in a range of [6,10] and
[5,19] in NS radii for the leading and the trailing edge of the
beam, respectively, across the orbit on this particular day.

Also, due to precession of the spin axis, the emission height
varies with time because the angle β(t) varies with time. Again,
there are two different heights for the leading and trailing edges
of the beam. These are shown in Figures 8 and 9. In BP2, the
difference between the two heights is not as significant as in
BP1 because of the orbital position of B in BP2. In this region,
pulsars B, A, and our line of sight are roughly aligned, resulting
a less deviation in emission heights for the two edges of the
beam.

If the emission is produced from the boundary between the
open and closed field lines, we can consider these estimates to
be the actual emission heights for B. If the emission is produced
elsewhere within the open field line region, these are lower limits
on emission heights.

6. UPPER LIMIT OF THE EMISSION HEIGHT

We may also set an upper limit to the radio emission height
by modeling the distortions of B’s magnetosphere induced by
the wind of A. Since both the magnetosphere and the wind
are strongly magnetized, the distortions depend on the relative
strengths of the magnetic fields and thus on the distance from
the NS. Depending on the location of the radio emission region
and the line of sight (and hence on the orbital position) an
observer will detect different radiation signatures of the distorted
magnetosphere. Inversely, by studying the orbital modulation
and using a model of the distorted magnetosphere, we can
deduce the location of the emission region.

Similar to how the Sun distorts Earth’s magnetosphere, pulsar
A produces a strong enough wind to interact with the magnetic
field of B and shape its magnetosphere. The nature of this
interaction will vary depending on the properties of the wind.
For a wind with a substantial particle flux, the formation of
a bow shock, similar to case of Earth, is expected. In this
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Figure 7. Model-estimated radio emission height across the orbit on MJD 54050 (2006 November 11). The solid line represents the height of the emission produced
by the leading edge of the beam and the dotted line represents that for the trailing edge of the beam. In order to consistent with observations, we used our best-fit
geometrical parameters of the beaming model, α = 61◦ and θ = 138.◦5. At this epoch, φprec is 46◦, the impact parameter β is 3◦, and the corresponding spin phase is
126◦. Note that the difference between the corresponding heights for the leading and trailing components of the beam is more significant in some parts of the orbit.
The orbital longitude regions for BP1 and BP2 are denoted with dashed and dot-dashed lines, respectively.

Figure 8. Model-estimated radio emission heights of the orbital longitude region of BP1 vs. time across one precessional cycle. This predicted variation of emission
height with time is due to spin precession, making different line-of-sight cuts across the radio beam. The solid line represents the emission height from the leading
edge of the beam and the dotted line represents that for the trailing edge. Here, the orbital phase is fixed at 200◦ (BP1), but the spin phase changes with time correspond
to the β value. The time axis represents a full precession cycle, 71 yr. Here, we have used the same geometrical parameters as in Figure 7 and assumed a full elliptical
beam, not a partially filled horse-shoe beam. If the beam is partially filled then no radio emission is expected from 2008 to 2024. This is why the model still predicts
radio emission at present-day MJDs. The emission height is zero (∼2030–2067) when the line of sight is out of the radio beam.

MHD confinement model, the shape of Earth’s magnetosphere
is mostly determined by the pressure balance between the
supersonic solar wind and Earth’s nearly dipolar field. This
curved shape of the magnetosphere is reproduced well by current
numerical models (Tsyganenko 2002a, 2002b; Tsyganenko &
Sitnov 2007).

On the other hand, for a strongly magnetized wind, reconnec-
tion between the wind and the companion’s magnetic field lines
must be considered. This results in an open structure for the

whole magnetosphere, similar to the one originally proposed by
Dungey (1961) for planetary magnetospheres.

In the case of the double pulsar, it is unclear whether an MHD
confinement model or a reconnection model is more applicable
due to the unknown composition of A’s wind. However, we are
mostly interested in the overall geometric structure of B’s mag-
netosphere. For this purpose, it is sufficient to discuss magneto-
spheric structure in the most basic terms, relying on the models
of planetary magnetospheres. We consider two extreme, though
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Figure 9. As described in Figure 8, but for BP2 (orbital longitude is 290◦). Note that in this bright phase, the emission height difference between the leading and
trailing components of the beam is not as significant as in BP1.

complimentary, models of Earth’s magnetosphere; the highly
resistive, analytical reconnection model of Dungey (1961), here-
after D61, and the fully screened, three-dimensional numeri-
cal hydrodynamic confinement model of Tsyganenko (2002a,
2002b), hereafter TS02.

We use the D61 model of the open planetary magnetosphere
as a simple analytical representation of the distorted magneto-
sphere. The D61 model states that the interplanetary magnetic
field (IMF) may become reconnected with the terrestrial field
along the dayside magnetopause, where the magnetopause is the
boundary between Earth’s magnetosphere and the solar wind.
This results in a distortion of the higher altitude regions of the
inner magnetosphere.

Forbes & Speiser (1971) neglected the dynamics of the
reconnection processes and modeled Earth’s magnetosphere as
a linear superposition of two magnetic fields: Earth’s closed field
and the solar wind’s uniform field. Following this approach, we
can represent B’s magnetosphere as a simple addition of the
pulsar’s dipole field and the wind’s uniform field. Similar to
the IMF in the D61 model, we treat the magnetic field in A’s
wind as homogeneous in the vicinity of B, with the direction
of the magnetic flux density vector perpendicular to the line
connecting the two pulsars (assuming a toroidal field). However,
depending on whether the large-scale toroidal field is prograde
or retrograde with respect to the orbit, the geometric structure of
the magnetosphere can be significantly different (see Figure 10).

Alternatively, we can use TS02 for more precise, three-
dimensional modeling. This model is a data-based best-fit
representation for Earth’s screened magnetosphere based on a
large number of satellite observations. The model provides the
option of adding the contributions from external magnetospheric
sources such as the ring current, magnetotail current system,
magnetopause currents, and the large-scale system of field-
aligned currents to Earth’s dipole field.

We used the GEOPACK code repository developed by Tsyga-
nenko, with modifications to match the properties of the double
pulsar system. Instead of analyzing every current component
in the TS02 model separately, we manipulated the global input
parameters of the code that define the geometric structure of

the magnetosphere. The shape and scale of the magnetosphere
is controlled by the solar wind ram pressure and the dipole tilt
only. Variations in the value of the ram pressure change the
magnetosphere self-similarly. In the numerical model, the ram
pressure is represented by the parameter PARMOD(1) and has
units in nPa. PARMOD(2) represents the disturbance storm time
(Dst) index and has units in nT. The Dst index is a measure
of the size and strength of the ring current, which contributes
to the overall field configuration in the inner magnetosphere.
The TS02 model is designed in such a way that the struc-
ture of the magnetosphere within a stand-off distance from the
Earth has a very small dependence on the components of the
IMF. Hence, for simplicity we set the transverse components of
the external field (PARMOD(3) = By and PARMOD(4) = Bz)
to zero.

We performed a visual fitting (see Figure 11) of the boundary
produced by the TS02 code to the boundary produced by
our theoretical model (Equations (1) and (2) in Section 3).
We set PARMOD(3) and PARMOD(4) equal to zero and
changed PARMOD(1) and PARMOD(2) until the shapes of
the boundaries matched. The best-fit values that we obtained
are PARMOD(1) = 8 nPa for the solar wind ram pressure,
PARMOD(2) = 100 nT for the Dst index, and, by default,
the zero transverse components of the IMF (PARMOD(3) =
0 nT, PARMOD(4) = 0 nT). This set of parameters produces a
magnetosphere boundary with a stand-off distance of about 10.4
stellar radii. In order to make the spatial scaling consistent with
the properties of the double pulsar, we rescaled the stellar radius
parameter R0 from 1 to 0.0026. This change simply ensures that
the stand-off distance is about 4000 stellar radii, which is the
value assumed throughout this section.

The obtained values of the parameters (PARMOD(1-4) and
R0) are not supposed to be physically realistic; rather, they
produce a magnetosphere with a shape and size (defined by
the stand-off distance) that match the properties of the double
pulsar. Moreover, there could be other successful fits since
they are derived from the visual inspection of the boundaries
(see Figure 11). Nevertheless, using this particular set suits
our purpose of modeling an approximate structure of pulsar

11



The Astrophysical Journal, 750:130 (17pp), 2012 May 10 Perera et al.

δ = 90ο

δ = 60ο

(a) (b)

(c) (d)

δ = 90ο

δ = 60ο

To the pulsar A To the pulsar A

To th
e pulsar A

To th
e pulsar A

Figure 10. Geometric structures of Dungey-type magnetospheres in two dimension. Magnetospheric models constructed by adding a wind’s uniform field, in the
direction shown by the arrows on the dashed lines, to a dipole field with northward orientation. Magnetic fields of 6.4 × 1011 G and 10 G are assumed for the surface
magnetic field of pulsar B and the wind magnetic field, respectively. The direction of the wind is the opposite of the arrow showing the direction to the pulsar A. Both
(a) and (b) have the same direction of the wind and orientation of the dipole. Same is true for (c) and (d). However, two different possible orientations of the magnetic
field in the wind result in very different overall magnetospheric structures. Panel (a) shows smaller deflection of the polar field lines compared to (b). Magnetosphere
in (c) is mostly open, whereas one in (d) is mostly closed. In the latter, a radius of the enclosed magnetosphere is about 4 × 109 cm.

B’s distorted magnetosphere without using large computational
resources.

We employed the same criteria to estimate an upper limit
for the emission height for both models. We assumed that the
elliptical emission beam is located close to the polar field lines,
which are nearly aligned with the magnetic axis at r � RLC,
where RLC is the light cylinder radius. The anisotropic distortion
of the magnetosphere by the wind changes the location of the
polar field line relative to the undistorted magnetic axis (see
Figures 12(b) and (d)). As a first approximation, the deflection
angle can be expressed as αdefl ∼ Bw/Bp, where Bw and Bp are
the magnetic filed of pulsar A’s wind and the magnetic field of
pulsar B, respectively. Close to the NS’s surface, the influence
of the wind’s magnetic field on the overall field structure is
negligible. Therefore, αdefl ∼ 0 at the surface and increases
outward as the wind’s magnetic field becomes comparable to
the pulsar field near the boundary. The ratio between the two
fields, and hence the amplitude of the deflection, depends on the
distance from the star as well as on δ, the angle between B’s
magnetic axis and the line connecting the two pulsars. There
is a certain height above which the distortion is strong enough

to deflect the polar field line by more than the angular radius
of the beam (ρa,10 � 14.◦3), which is determined in Section 4.
Furthermore, if the component of the distortion perpendicular
to the trajectory of the center of the beam in the vicinity of
our line of sight is large enough, then the emission beam
can be pushed away from the line of sight to the extent that
they do not intersect with each other for any spin phase (see
Figure 12(b)). This will render the emission beam unseen. On
the other hand, the opposite can be true if the distortion occurs
mostly along the local trajectory of the beam. In this case, the
visibility of the beam stays unchanged and a small shift in
the spin phase, at which the emission beam is seen, might be
the only observable imprint of the distortions (Figure 12(d)).
However, the geometry of pulsar B suggests that the former
must be realized (Figures 12(a) and (b)). Therefore, in order to
be able to detect pulsed radio emission from B, the deflection
angle αdefl should not exceed 14.◦3. This places an upper limit
on the height of the emission region. However, in order to be
able to use this reasoning, a pulsar must be detectable through
its pulsed radio emission. We therefore restrict our analysis to
only BP1 and BP2, the distinct radio-loud regions of the orbit.

12
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rs

Figure 11. TS02 magnetosphere fitted to the theoretical boundary model. Field
lines are plotted in solid. Out of which the green color is for the polar field lines.
Dashed line represents the bow shock boundary model. Tilt of the dipole is 45◦
and rs ∼ 4 × 109 cm. We fix the shape and scale of the boundary and fit the
parameters of the TS02 model.

(A color version of this figure is available in the online journal.)

In order to make use of this criteria, we analyzed the
moments of the closest approach at the orbital phases within
BP1 and BP2. At the moment of the closest approach, the
magnetic axis is nearly aligned with the line of sight, making
the angle δ about the same as the angle between the line of
sight and the line connecting the two pulsars. In turn, the
latter is related to the orbital phase as (90◦ − φorb)(mod 180).
Therefore, δ∗ ∼ (90◦ − φorb) when −90◦ � φorb < 90◦ and
δ∗ ∼ (φorb − 90◦) when 90◦ � φorb < 270◦, where δ∗ is the
value of δ at the moment of the closest approach. For instance,
at the orbital phase 185◦, δ∗ ∼ 95◦ and at 305◦, δ∗ ∼ 145◦.
Therefore, δ∗ varies within [95◦, 145◦] and [145◦, 180◦] for BP1
and BP2, respectively.

We calculated the deflection angle αdefl using two different
methods. We used a simple analytical estimation for the sim-
plified D61 model, while employing more complex numerical
calculations for the modified TS02 model. In the D61 model, the
system is characterized by three main parameters: the magnetic
moment of the pulsar, the magnetic field in A’s wind �Bw, and
the angle between the two. Neither of the models depend on
the absolute values of the pulsar and wind’s magnetic fields. In
both cases, only the ratio of these two fields matter. This boils
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Figure 12. Schematic view of the deflection of the emission direction by the wind. Panels (a) and (c) show the configuration of the main axes of an isolated pulsar, with
different orientation of the spin axis, however. Panels (b) and (d) show the same picture with an addition of the wind from the companion, for the same configuration
of axes as (a) and (c), respectively. Gray-shaded ribbon-type surfaces are the traces of the cross-section of the emission beam. If the line of sight intersects this surface
then the observer detects the radio emission. In case of (a) and (b), the orientation of the line of sight with respect to the spin axis and magnetic axis is such that it does
not intersect with the gray-shaded surface after distortion, as shown in (b). This is not the case for (c) and (d) where the line of sight intersects with the gray-shaded
surfaces, even after distortion.
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down to the assumption that the wind from A is strongly mag-
netized (i.e., the shape of the boundary and stand-off distance
is defined solely by the magnetic pressure balance). The pulsar
wind is highly magnetized near the light cylinder. The particle
component only takes over much further, closer to the termina-
tion shock. Since the wind from A reaches B after only 1000
light cylinder radii, the assumption about its high magnetization
is valid. Therefore, we can describe both fields by one dimen-
sionless parameter: stand-off distance normalized to the stellar
radius. At the moment of the closest approach, the magnetic mo-
ment of B is almost aligned with the line of sight. In turn, due
to the peculiarity of the double pulsar, the line of sight is nearly
parallel to the orbital plane. Thus, at the moment of the closest
approach, B’s magnetic axis and the magnetic field of A’s wind
are nearly coplanar. Therefore, for approximate estimates, the
full three-dimensional analysis of the system is not necessary
and we only carry out the calculations for the two-dimensional
configuration.

In two-dimensional polar coordinates (r, λ), the equation for
the magnetic field lines reads as

dr

B tot
r

= rdλ

B tot
λ

, (22)

where λ is the colatitude and is equal to 90◦ at the equator and
to zero along the magnetic axis, which is the same colatitude
angle that is defined in Equation (5). The angle between the local
tangent to the field line and the vector �r can be approximated as
rdλ/dr . In order to find the deflection angle of the polar field
line due to the distortions by the wind, we consider the change
in rdλ/dr:

αdefl =
(

rdλ

dr

)
distorted

−
(

rdλ

dr

)
undistorted

. (23)

As a superposition of the pulsar’s dipolar and wind magnetic
fields we take a simple addition of the two. Therefore, it follows
from Equation (22) that

αdefl =
(

B
p

λ + Bw
λ

B
p
r + Bw

r

)
−

(
B

p

λ

B
p
r

)
. (24)

Here, B
p
r ,Bp

λ and Bw
r , Bw

λ are r and λ components of the pulsar
and wind magnetic fields, respectively. The angle between the
local components of the fields can be either δ∗ + λ + 90◦ or
90◦ − (δ∗ +λ), depending on the orientation of the toroidal field.
Thus, in the frame of the dipole, the magnetic field components
can be expressed as follows:

Bp
r = −μ0m

2π

cos λ

r3
(25)

B
p

λ = μ0m

4π

sin λ

r3
(26)

Bw
r = ∓Bw

0 sin(λ + δ∗) (27)

Bw
λ = ∓Bw

0 cos(λ + δ∗). (28)

Here, m is a magnetic moment of pulsar B while Bw
0 is a

strength of the wind magnetic field. The wind magnetic field
structure is believed to be toroidal. However, for the sake of

simplicity, we assumed a locally uniform wind field across the
whole magnetosphere of B, which is feasible since the radius
of the light cylinder is much smaller than the orbital radius. In
Equations (27) and (28), Bw

r and Bw
λ can switch signs depending

on whether the large-scale toroidal field of the wind is prograde
with respect to the orbital motion of the pulsars or retrograde.
Mathematically it is equivalent to replacing δ∗ with δ∗ + 180◦.
Below, we derive the approximate expression for αdefl for the
upper signs in Equations (27) and (28) and only in the end
substitute δ∗ + 180◦ instead of δ∗ to account for both cases.

It is reasonable for our case (αdefl � 14.◦3) to limit our
estimations to the field lines close to the magnetic axis, i.e.,
λ ∼ 0◦. Then we can rewrite Equations (25)–(28) in the
following way:

Bp
r = −μ0m

2π

1

r3
(29)

B
p

λ = 0 (30)

Bw
r = −Bw

0 sin δ∗ (31)

Bw
λ = −Bw

0 cos δ∗. (32)

Here, we are only left with the upper signs in the second pair of
equations. We get an approximate expression for the deflection
angle by substituting Equations (29)–(32) into Equation (24)

αdefl = Bw
0 cos δ∗

μ0m

2π
1
r3 + Bw

0 sin δ∗
. (33)

We can rewrite Equation (33) in terms of normalized distance
r̄ ≡ r/rs, where rs = (μ0m/2πBw

0 )1/3 is a stand-off distance
(rs ∼ 4 × 109 cm as estimated from our boundary model),

αdefl = r̄3 cos δ∗
1 + r̄3 sin δ∗

. (34)

From the criteria for the pulsed radio emission detectability, it
follows that the values of r̄ for which αdefl > 14.◦3 must be
excluded as possible emission heights. To find such values of r̄
for any δ∗, we use the condition that the absolute value of the
right-hand side of Equation (34) must exceed 14.◦3. Hence, in
the case of a prograde toroidal field we have∣∣∣∣ r̄3 cos δ∗

1 + r̄3 sin δ∗

∣∣∣∣ > 14.◦3. (35)

By replacing δ∗ with δ∗ + 180◦, we get the detectability criteria
for the retrograde configuration∣∣∣∣ −r̄3 cos δ∗

1 − r̄3 sin δ∗

∣∣∣∣ > 14.◦3. (36)

The minimum of the values of r̄ that satisfy Equations (35)
or (36) for any δ∗ corresponding to BP1 and BP2 is the best upper
limit we can put on the emission height with this approach. In
Figure 13, we show the solutions of Equations (35) and (36),
represented by the shaded areas over the contours of constant
deflection angle of 14.◦3. As we can see in Figure 13, both
orientations of the wind magnetic field produce almost the same
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Figure 13. Excluded values of the radio emission height calculated by using the analytical D61 model. The curtain-shaped shaded areas represent the domains
for emission height and δ∗ for which the deflection angle exceeds 14.◦3. The area with blue stripes leaned to the left corresponds to the prograde configuration
(Equation (35)), while the area with green stripes leaned to the right corresponds to the retrograde configuration (Equation (36)). The shaded areas between the vertical
dashed lines represent the values of δ∗ valid for the analysis (i.e., those corresponding to BP1 and BP2). The black triangle marks the minimum value of ∼2500 NS
radii within the shaded range of δ∗. Thus, 2500 NS radii is the best upper limit for the emission height within the D61 model.

(A color version of this figure is available in the online journal.)

upper limit, which is ∼2500RNS. This value corresponds to
δ∗ ∼ 170◦–180◦, i.e., when pulsar B, pulsar A, and Earth
are nearly aligned, where pulsar B is in BP2 region. This is
consistent with the method by which we estimate an upper
limit. At superior conjunction, the wind magnetic field is
perpendicular to the magnetic axis, resulting in the largest
distortion of the polar field lines. Therefore, the distance from
the star surface, above which the deflection is more than 14.◦3,
is smallest at superior conjunction.

We can use the same criteria to set an upper limit on the
emission height using the numerical TS02 model. We require
that the numerically calculated distortion angle of the polar
field line must not exceed the angular radius of the beam
(ρa,10 � 14.◦3). This allows us to find the maximum emission
height for each value of δ∗.

Using the modified TS02 code, we can trace any field line
(particularly polar field lines) of B’s distorted magnetosphere
for any orientation of the magnetic axis with respect to A’s
wind. This means that we can calculate the deflection angle for
any δ∗ at any altitude. The 14.3 contour in Figure 14 shows the
altitudes at which the deflection angle equals 14.◦3 for all values
of δ∗. The altitude with the lowest value among others is the best
upper limit we can put on the emission height. Since we can
only consider δ∗’s corresponding to BP1 and BP2, the resultant
best upper limit of the emission height would be 2500RNS
for δ∗ ∼ 95◦ (orbital phase of 185◦, which is in BP1; see
Figure 14).

In summary, we adapted the models of Earth’s distorted mag-
netosphere to the double pulsar system, based on the similarities
between the two. We adjusted the spin–orbital and magnetic

field parameters corresponding to the observational data. Both
magnetospheric models, the analytic D61 and numerical TS02,
draw simplified and very extreme pictures of the double pulsar.
Nevertheless, both models offer an improvement over a sim-
ple dipole and allow us to set an upper limit on the altitude of
the emission region using a novel technique. Moreover, they
would greatly compliment each other if somehow unified into
one model.

We used the criteria of the pulsar emission detectability to
estimate an upper limit of the emission height. This requires the
distortion angle of the polar field line not to exceed the angular
radius of the beam, derived from the observational data.

Moreover, we arrived at similar results by employing two
very different models; the analytical, highly resistive Dungey
type model and the numerical, fully screened modified TS02
model. Both approaches led to the conclusion that B’s radio
emission is generated within the inner 22% of the light cylinder.

7. DISCUSSION

The determination of radio pulsar emission heights is im-
portant for understanding their emission mechanisms. Pulsar B
of the double pulsar system provides a unique opportunity to
study different emission regions of the magnetosphere due to
precession. Also, the magnetosphere is distorted, exhibiting a
complicated field line structure, due to the wind of A. These
distortions depend on the orbital and rotational phases of B. Ob-
servations of these distortions, not observed in isolated pulsars,
via the orbital variations of the radio intensity of B allow us to
pinpoint the location of radio emission.
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Figure 14. Fixed value contours for the deflection angle calculated by using the modified TS02 model. Each contour shows the upper limits to the emission region
height for the corresponding value of the deflection angle and δ∗. The shaded area between the vertical dashed lines represents the values of δ∗ valid for the analysis
(i.e., those corresponding to BP1 and BP2). The black triangle on the 14.◦3 contour marks the minimum value of 2500 NS radii within the shaded range of δ∗. Thus,
2500 NS radii is the best upper limit for the emission height within the modified TS02 model.

(A color version of this figure is available in the online journal.)

We have applied a simple wind-magnetosphere interaction
model to determine the boundary of the magnetosphere of B.
The best solution describes the shape of the boundary as a
polynomial, with coefficients dependent on the angle between
the magnetic axis and the line connecting the two pulsars.
Furthermore, the boundary was not axially symmetric, but
for simplicity we modified it to be symmetric. The stand-
off distance ranges from (3.8–4.5) × 109 cm according to
the orientation of the magnetic axis with respect to the line
connecting two pulsars, resulting in a size of the polynomial
boundary of less than 30% of the light cylinder radius. However,
this size is three times larger than the size inferred from eclipses
of A. Thus, a possible explanation for this is that the particle
density in the magnetosphere of B falls off significantly as a
function of the radial distance from the center of the pulsar,
so that the radiation of A penetrates the outer regions of B’s
magnetosphere.

Moreover, the variation of the boundary will change the
shape of the open field line region. As a result, the spin-down
luminosity of B can vary slightly due to the variation in the area
of the polar cap. This causes a 1.5% periodic variation in the
spin-down luminosity. It can also lead to a correction on the spin
phase, but this is very small (Gourgouliatos et al. 2011). Thus,
we did not consider this effect in our model.

As we determined, the range of the allowed emission height
depends on the orbital motion due to the relative orientation of
the magnetic axis with respect to the boundary. Also, precession
changes the location of the spin axis, so that the emission height
changes with time. In both of these variations, we have been
calculating the emission heights for both the leading and the
trailing edges of the conal elliptical beam. For a normal pulsar
with its light-cylinder boundary, these two edges give the same
height due to cylindrical symmetry. When the impact parameter
is equal to the angular radius of the beam across the semimajor
axis, we would detect a single-peak profile, resulting in one
emission height. Figure 7 shows that the relative heights of

emission due to the two components of the beam switch in the
two bright phase regions since the orientation of the boundary
changes throughout the orbit. These estimated emission heights
are about 1% of the light cylinder radius or 4% of the stand-
off distance. Again, these should be considered lower limits
if the emission does not originate on the last closed field
line. Moreover, the analytical and numerical approaches to the
upper limit estimate lead to the conclusion that pulsar B’s radio
emission is generated within 22% of the light cylinder.

In normal pulsars, radio emission heights have been cal-
culated by using their geometry and the pulse profile widths
(Kijak & Gil 1997). These range from about 10 to 100RNS, less
than 10% of the light cylinder radius. Our emission height esti-
mates are consistent with these results. Thus, the radio emission
produced by B likely has the same mechanism as for isolated
pulsars, which is consistent with Lyutikov (2005). Most theo-
ries of pulsar radio emission place the generation region close
to the star, typically within one stellar radius (e.g., Melrose
1995). In contrast, a model based on the anomalous cyclotron-
Cherenkov resonance (Machabeli & Usov 1979; Lyutikov et al.
1999) requires emission to be generated much higher up in the
magnetosphere, at hundreds of stellar radii. The fairly high emis-
sion altitudes of radio emission inferred in the present paper are
consistent with the latter models.

The magnetospheres of pulsars can be distorted due to rotation
as proposed in Dyks & Harding (2004), resulting in a rotational
sweepback of the magnetic field lines. They found that at low
altitude the rotation deflects the local direction of the magnetic
field line by at most an angle of the order of (r/RLC)2, where r
is the radial distance of the field line. We applied this rotational
sweepback model to pulsar B along with our boundary model
and found that the rotational sweepback is very small, because
the deflection of the magnetic field line from its local direction is
of order 0.1 radians. The estimated upper limit for the emission
height implies that this effect is less than 0.05 radians, negligible
compared with the distortions by the wind. However, this effect
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is significant when the radial distance of the field is close to the
light cylinder, so that it is important in normal pulsars.

The relativistic phase-shift method can be used to determine
the radio emission heights of pulsars as described in Gangad-
hara & Gupta (2001) and Dyks et al. (2004). This method uses
aberration and retardation effects to explain the observed pulse
phase shift of pulse profiles containing core and conal com-
ponents. We applied this method to the double-peaked pulse
profiles of pulsar B to estimate the emission height. Because
pulsar B has only a conal component, we assumed that pulse
phase of zero was at the minimum between the two peaks. Then
the phase shift is measured from the two peaks, leading and
trailing, with respect to this reference phase. The calculation
shows that the phase-shift method does not work for pulsar B.
For example, the emission height on MJDs 53860 and 53939 is
6 and 23 NS radii, respectively. On MJD 54050 it is zero due
to zero phase shift. Also on MJD 54400, the phase of trailing
component is larger than the absolute phase of leading compo-
nent, so that the emission height becomes negative. The reason
of these calculated height fluctuations is that the pulse profile of
B is not stable and varies significantly. Therefore, it is difficult
to measure the shift in pulse phase accurately. Also, as there
are only two peaks in the pulse profile of B, the determination
of the pulse phase zero reference point is difficult. Therefore,
the measured shifts and then the emission heights may not be
correct, concluding that this method cannot be used to constrain
emission heights of pulsar B. However, this is a useful method of
estimating emission heights of normal pulsars that have stable
pulse profiles with both core and conal emission components
(Gupta & Gangadhara 2003).

In summary, by using the method presented in this paper,
we can place limits on the radio emission height for any pulsar
with well-determined emission geometry. The advantage of this
method is that by estimating the field-line constant by tracing
the magnetic field lines, we can constrain the emission heights
of pulsars that have high magnetic inclinations that make them
unsuitable for the other methods. Our radio emission height
estimations for pulsar B will be useful for future studies and
in particular can be used to constrain proposed geometrical
models such as Lyutikov (2005) and Freire et al. (2009) in order
to accurately explain the observations.
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