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ABSTRACT

We present timing observations of four millisecond pulsars discovered in the Parkes
20-cm multibeam pulsar survey of the Galactic plane. PSRs J1552−4937 and
J1843−1448 are isolated objects with spin periods of 6.28 and 5.47 ms respectively.
PSR J1727−2946 is in a 40-day binary orbit and has a spin period of 27 ms. The
4.43-ms pulsar J1813−2621 is in a circular 8.16-day binary orbit around a low-mass
companion star with a minimum companion mass of 0.2 M⊙. Combining these re-
sults with detections from five other Parkes multibeam surveys, gives a well-defined
sample of 56 pulsars with spin periods below 20 ms. We develop a likelihood analysis
to constrain the functional form which best describes the underlying distribution of
spin periods for millisecond pulsars. The best results were obtained with a log-normal
distribution. A gamma distribution is less favoured, but still compatible with the obser-
vations. Uniform, power-law and Gaussian distributions are found to be inconsistent
with the data. Galactic millisecond pulsars being found by current surveys appear
to be in agreement with a log-normal distribution which allows for the existence of
pulsars with periods below 1.5 ms.

Key words: methods: statistical — stars: neutron — pulsars: general

1 INTRODUCTION

Millisecond radio pulsars (MSPs) are fascinating objects to
study. Their phenomenal rotational stability allows them
to be used for a wide variety of fundamental physics
experiments including as a Galactic-scale observatory to
search for low-frequency gravitational waves (see, e.g.,

⋆Email: Duncan.Lorimer@mail.wvu.edu

Hobbs et al. 2010). Ever since the discovery of the first MSP
(Backer et al. 1982) it has been clear that the difficulties
in detection imply that the Galactic population of MSPs
is substantial. Early studies showed that the population of
MSPs is comparable to that of normal pulsars (see,.e.g.,
Kulkarni & Narayan 1988; Johnston & Bailes 1991).

The continued improvement of data acquisition systems
over the past twenty years has led to a dramatic increase in
survey sensitivity to MSPs. The number of known MSPs in
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2 D. R. Lorimer et al.

Figure 1. Integrated pulse profiles each showing 360 degrees of rotational phase at 20 cm wavelength for the four MSPs described in
this paper. Data were obtained with the Parkes digital filterbank systems.

Figure 2. Integrated polarization profiles for the two MSPs for which significant RMs were detected. The top panels of each plot show
the polarization position angle as a function of pulse phase. The bottom panels show total intensity (bold line), linear polarization (solid
line) and circular polarization (dotted line).

the Galactic disk (i.e., those not associated with globular
clusters) is now 23012. Because of the great success of blind
surveys of the Galactic field (for a review, see Stovall et al.
2013), and targeted searches of Fermi sources (Ray et al.
2012), for the first time in a decade, Galactic MSPs out-
number their counterparts in globular clusters.

The Parkes multibeam pulsar survey (PMPS) of the
Galactic plane is the most successful large-scale search for
pulsars so far undertaken. Six previous papers in this se-
ries have presented timing parameters for 742 newly dis-
covered pulsars and have discussed various aspects of the
survey results (Manchester et al. 2001; Morris et al. 2002;
Kramer et al. 2003; Hobbs et al. 2004; Faulkner et al. 2004;
Lorimer et al. 2006; Crawford et al. 2013). Over the past
five years, several re-analyses of the survey data have
been carried out. Keith et al. (2009) discovered a further
28 pulsars by applying new candidate sorting algorithms
to the data processed earlier by Faulkner et al. (2004).
Eatough et al. (2009) applied a new interference removal
technique to a small portion of the data and discovered
a further four pulsars. In a further reanalysis, Keane et
al. found one fast radio burst (Keane et al. 2012) and 10
rotating radio transients (Keane et al. 2010) in addition
to the 11 found originally by McLaughlin et al. (2006).
Mickaliger et al. (2012) reported the discovery of the 34.5 ms

1 http://astro.phys.wvu.edu/GalacticMSPs
2 http://www.atnf.csiro.au/research/pulsar/psrcat

binary pulsar J1725−3853 as well as four other millisecond
pulsars. One other binary MSP, J1753−2814, has also been
discovered as a result of this processing effort (Mickaliger
et al. in preparation). Following earlier discoveries using
“stack-slide” acceleration searches by Faulkner et al. (2004),
Eatough et al. (2013) report the discovery of 16 pulsars in
a coherent acceleration search of the data. Ongoing process-
ing by Einstein@Home volunteers (Knispel et al. 2013) has
resulted in the discovery of a further 23 pulsars.

In this paper, we present timing solutions for four MSPs
discovered in the PMPS. Preliminary discovery and confir-
mation observations of these pulsars were previously pub-
lished by Faulkner et al. (2004). The total number of pul-
sars found in the survey so far stands at 833. Since ex-
tensive population studies of the normal pulsar popula-
tion as revealed by the PMPS have already been carried
out (Faucher-Giguère & Kaspi 2006; Lorimer et al. 2006), in
this paper we focus our discussion on the spin period dis-
tribution of the MSP population. The plan for this paper
is as follows. In §2 we present the basic timing parameters,
pulse widths, mean profiles and flux densities for the four
new MSPs. In §3 we compile a sample of MSPs and use it
to carry out a likelihood analysis to constrain the underly-
ing distribution of spin periods. The main conclusions are
summarized in §4.

c© 0000 RAS, MNRAS 000, 000–000
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The Parkes multibeam pulsar survey: VII. 3

Table 1. Spin, astrometric and derived parameters from the timing analysis of four MSPs. All astrometric parameters are given in the
J2000 coordinate system. The reduced χ2 values from each fit is listed as χ2

r . Figures in parentheses represent the uncertainties in the
least significant digit and are the nominal 1-σ tempo2 uncertainties. Distance estimates are based on the pulsar DM using the Cordes
& Lazio (2002) NE2001 electron-density model. Pseudo-luminosities are computed by multiplying flux density by distance squared.
Characteristic ages, magnetic fields and spin-down luminosities are based on the spin period and period derivative (see, e.g., Lorimer &
Kramer 2005) and account for the contributions due to the Shklovskii effect and Galactic acceleration.

Parameter PSR J1552−4937 PSR J1727−2946 PSR J1813−2621 PSR J1843−1448

R.A. (hh:mm:ss.s) 15:52:13.2709(4) 17:27:15.09493(17) 18:13:40.59165(10) 18:43:01.3750(3)
Dec. (dd:mm:ss.s) −49:37:49.744(11) −29:46:36.797(17) −26:21:57.055(18) −14:48:12.61(3)
Proper motion in R.A. (mas y−1) −3(3) 0.6(9) −7.3(9) 10.5(19)
Proper motion in Dec. (mas y−1) −13(8) 0(8) −22(16) 12(15)
Epoch of position J2000 J2000 J2000 J2000
Spin period (ms) 6.2843113814174(12) 27.0831832440066(12) 4.4300116286341(18) 5.4713308755095(6)
First derivative of spin period 1.900(4) × 10−20 2.4632(3) × 10−19 1.2466(6) × 10−20 6.209(18) × 10−21

Dispersion measure (cm−3 pc) 114.19(8) 60.74(3) 112.524(9) 114.51(7)
Rotation measure (rad m−2) — –61(32) 136(8) —
Epoch of period (MJD) 54033 54723 54058 53934
Data span (MJD) 52860–55206 52666–56781 52696–55419 52696–55152
χ2
r / degrees of freedom 1.00/132 1.45/208 0.90/134 1.16/115

Post-fit rms residual (µs) 78 43 17.5 49

Flux density at 1.4 GHz (mJy) 0.14 0.25 0.65 0.57
Pulse width at 50% of peak (ms) 0.9 1.8 0.66 1.0
Distance (kpc) 4.8 1.4 2.9 2.9
Pseudo-luminosity (mJy kpc2) 3.2 0.49 2.1 4.8
Intrinsic period derivative 0.7(1.1) × 10−21 2.426(7) × 10−19 −0.6(1.7) × 10−21 −0.5(1.1) × 10−21

Characteristic age (Gy) > 15 1.77 > 5.6 > 14
Surface magnetic field (108 G) < 2.1 25.9 < 2.4 < 1.9
Spin-down luminosity (1033 ergs s−1) < 1.1 0.48 < 5.7 < 1.5

2 FOUR MILLISECOND PULSARS

The pulsars were discovered using the processing schemes
described by Faulkner et al. (2004). Following the confir-
mation and positional refinement procedures described by
Morris et al. (2002), each pulsar was observed regularly
at Parkes using initially the 512 × 0.5 MHz analogue fil-
terbank system (Manchester et al. 2001) and subsequently
the digital filterbank systems (Manchester et al. 2013). For
each pulsar, pulse times of arrival were determined from
the individual observations using standard pulsar timing
techniques (see, e.g., Lorimer & Kramer 2005) implemented
in the psrchive software package (Hotan et al. 2004)3. A
model containing the spin, astrometric and (if necessary)
any binary parameters was fitted to the arrival times us-
ing the tempo2 timing package (Hobbs et al. 2006). Arrival
times were referred to TT(TAI) and the DE421 planetary
ephemeris (Folkner et al. 2008) was used. Timing parame-
ters are expressed in “TCB” units native to tempo2 (see
Hobbs et al. 2006, for the definition of TCB). Integrated
pulse profiles are shown in Fig. 1.

Timing parameters from these analyses along with var-
ious derived quantities are presented in Tables 1 and 2. For
PSR J1727–2947, time-of-arrival uncertainties were multi-
plied by a factor ranging between 0.85–1.5 for different back-
end systems to maintain a reduced χ2 value close to unity.
Also listed in Table 1 is the post-fit root-mean-square resid-
ual. The values obtained from our timing so far are relatively
large (17–78 µs) and indicate that these pulsars are un-

3 http://psrchive.sourceforge.net

likely to be useful additions to MSP timing arrays. Although
proper motions in right ascension have been measured for
PSRs J1813−2621 and J1843−1448, we are unable to mea-
sure a significant proper motion in declination because of
the low ecliptic latitude of these pulsars. Flux densities at
1400 MHz and pulse widths at 50% of the peak level based
on the profiles shown in Fig. 1 are listed in Table 1.

For two of the MSPs, J1727–2947 and J1813–2621, sig-
nificant levels of polarized emission was measured and these
are shown in the integrated pulsed profiles in Fig. 2. Rota-
tion measures for both these pulsars were determined using
the rmfit tool within psrchive with conservative estimates
of the uncertainties.

PSRs J1552−4937 and J1843−1448 bring the total
number of isolated MSPs known in the Galactic disk to
37. When compared to the sample of 172 MSPs for which
an orbiting companion has been confirmed, the fraction of
observed isolated MSPs currently stands at 18%. An out-
standing issue in our understanding of MSP population is
to explain this population in a self-consistent fashion. In par-
ticular, an open question is whether isolated MSPs formed
in a different way from binary MSPs. We discuss this issue
further in § 3.6.

PSR J1727−2947 is a relatively long-period MSP (P ∼
27 ms) in a mildly eccentric (e ∼ 0.04) 40-day binary system.
With a minimum companion mass of ∼ 0.8 M⊙, the system
is most likely a member of the so-called “intermediate-mass
binary pulsar” (IMBP) class (Camilo et al. 2001) with a rel-
atively massive CO white dwarf companion. The parame-
ters for PSR J1813−2621 imply that it is very represen-
tative of the low-mass binary MSP population. Interpret-
ing the orbital parameters in the standard way (see, e.g.,

c© 0000 RAS, MNRAS 000, 000–000
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Table 2. Measured and derived orbital parameters for
PSRs J1727−2946 and J1813−2621 which use the “BT” binary
model (Blandford & Teukolsky 1976) and the “ELL1” binary
model (Lange et al. 2001) respectively. Parameters listed are the
binary period (Pb), projected semi-major axis (a sin i), orbital
eccentricity (e), first and second Laplace-Lagrange parameters
(ǫ1 and ǫ2), longitude and epoch of periastron (ω and T0) and
epoch of ascending node (Tasc). Figures in parentheses represent
1-σ tempo2 uncertainty in the least significant digits. For PSR
J1813−2621, we also list the corresponding values of e, ω and
T0 computed from the Laplace-Lagrange parameters. The Keple-
rian mass function (4π2G(a sin i)3/P 2

b
, where G is Newton’s con-

stant), and the minimum companion mass (calculated assuming
a 1.4 M⊙ pulsar and setting, i = 90◦) are listed.

PSR J1727−2946 J1813−2621

Binary model BT ELL1
Pb (d) 40.30771094(3) 8.159760702(10)
a1 sin i (lt sec) 56.532497(5) 5.592583(3)

e 0.04562943(16) 2.7+1.2
−1.1 × 10−6

ω (◦) 320.39625(20) 289+28
−18

T0 (MJD) 54711.47169(3) 54061.5+6.0
−4.0

ǫ1 – −2.5(10) × 10−6

ǫ2 – 9(8) × 10−7

Tasc (MJD) – 54054.9328319(6)

Mass function (M⊙) 0.1194 0.00282
Min. comp. mass (M⊙) 0.827 0.188

Lorimer & Kramer 2005), we infer a companion mass of at
least 0.2 M⊙, typical of a low-mass white dwarf. Optical
studies of these companions may provide further insights
into the nature of these two binary systems.

For nearby MSPs, it is well known (see, e.g.,
Damour & Taylor 1991) that two significant contributions
to the observed period derivative are the effects of secular ac-
celeration (sometimes referred to as the “Shklovskii effect”,
Shklovskii 1970) and Galactic acceleration. For a pulsar of
period P , transverse speed V , acceleration a, distance D
with an intrinsic period derivative Ṗint, the observed period
derivative

Ṗobs = Ṗint + P

(

a · n̂

c
+

V 2

cD

)

, (1)

where n̂ is a unit vector along the line of sight to the pulsar
and c is the speed of light. Following the discussion in §3.1 of
Nice & Taylor (1995) to compute these effects, and assum-
ing a 25% uncertainty on the distances, computed using the
NE2001 electron density model Cordes & Lazio (2002), we
calculated or placed limits on Ṗint for each pulsar and list
our results in Table 1. The resulting characteristic age and
magnetic field strength estimates for these pulsars are also
indicated in Table 1. As can be seen, for all but PSR J1727–
2946, these effects account for most of the observed period
derivative.

3 THE SPIN PERIOD DISTRIBUTION OF

GALACTIC MSPS

The large sample of over 1000 normal pulsars detected in
the various Parkes multibeam surveys has provided signif-
icant advances in our understanding of the normal pul-

Table 3. The 56 MSPs used in the population study. For each
pulsar, we list the spin period (P ), dispersion measure (DM),
Galactic longitude (l), Galactic latitude (b), whether this is a
binary pulsar as well as the survey which detected the pulsar.
The surveys considered were the PMPS, the Parkes high-latitude
(PH) pulsar survey, the Perseus arm (PA) pulsar survey, the Deep
Multibeam (DMB) survey, the Swinburne intermediate latitude
(SWIL) and high latitude (SWHL) surveys.

PSRJ P DM l b Bin Survey
(ms) (pc/cc) (◦) (◦)

0437−4715 5.76 2.6 253.4 −42.0 Y PH
0610−2100 3.86 60.7 227.7 −18.2 Y PH
0711−6830 5.49 18.4 279.5 −23.3 N SWHL
0721−2038 15.54 76.1 234.7 −2.9 Y PA
0900−3144 11.11 75.7 256.2 9.5 Y PH
0922−52 9.68 122.4 273.8 −1.4 Y PMPS
1022+1001 16.45 10.2 231.8 51.1 Y PH
1024−0719 5.16 6.5 251.7 40.5 N PH
1045−4509 7.47 58.2 280.9 12.3 Y SWIL
1125−6014 2.63 53.0 292.5 0.9 Y PMPS
1147−66 3.72 133.5 296.5 −4.0 Y PMPS
1216−6410 3.54 47.4 299.1 −1.6 Y PMPS
1435−6100 9.35 113.7 315.2 −0.6 Y PMPS
1546−59 7.79 168.2 323.5 −3.8 Y PMPS
1552−4937 6.28 114.6 330.0 3.5 N PMPS
1600−3053 3.60 52.3 344.1 16.5 Y SWIL
1603−7202 14.84 38.0 316.6 −14.5 Y SWIL
1618−39 11.99 117.5 340.8 7.9 Y SWIL
1629−6902 6.00 29.5 320.4 −13.9 N SWIL
1643−1224 4.62 62.4 5.7 21.2 Y SWHL
1652−48 3.78 187.8 337.9 −2.9 Y PMPS
1708−3506 4.50 146.8 350.5 3.1 Y PMPS
1713+0747 4.57 16.0 28.8 25.2 Y SWHL
1721−2457 3.50 47.8 0.4 6.8 N SWIL
1723−2837 1.86 19.9 357.3 4.2 Y PMPS
1725−38 4.79 158.4 349.4 −1.8 Y PMPS
1730−2304 8.12 9.6 3.1 6.0 N SWIL
1732−5049 5.31 56.8 340.0 −9.5 Y SWIL
1738+0333 5.85 33.8 27.7 17.7 Y SWHL
1741+1351 3.75 24.0 37.9 21.6 Y SWHL
1744−1134 4.07 3.1 14.8 9.2 N SWIL
1745−0952 19.38 64.5 16.4 9.9 Y SWIL
1748−30 9.68 420.2 359.2 −1.1 Y PMPS
1751−2857 3.92 42.8 0.6 −1.1 Y PMPS
1753−2814 18.62 298.4 1.4 −1.2 Y PMPS
1757−5322 8.87 30.8 339.6 −14.0 Y SWIL
1801−1417 3.62 57.2 14.5 4.2 N PMPS
1801−3210 7.45 176.7 358.9 −4.6 Y PMPS
1802−2124 12.65 149.6 8.4 0.6 Y PMPS

1804−2717 9.34 24.7 3.5 −2.7 Y PMPS
1813−2621 4.43 122.5 5.3 −3.9 Y PMPS
1826−24 4.70 81.9 8.3 −5.7 Y PMPS
1835−0115 5.12 98 29.9 3.0 Y PMPS
1843−1113 1.85 60.0 22.1 −3.4 N PMPS
1843−1448 5.47 114.6 18.9 −4.8 N PMPS
1853+1303 4.09 30.6 44.9 5.4 Y PMPS
1857+0943 5.36 13.3 42.3 3.1 Y PMPS
1905+0400 3.78 25.7 38.1 −1.3 N PMPS
1909−3744 2.95 10.4 359.7 −19.6 Y SWHL
1910+1256 4.98 38.1 46.6 1.8 Y PMPS
1911+1347 4.63 31.0 47.5 1.8 N PMPS
1918−0642 7.65 26.6 30.0 −9.1 Y SWIL
1933−6211 3.54 11.5 334.4 −28.6 Y SWHL
1934+1726 4.20 62.0 53.2 −1.1 Y DMB
1939+2134 1.56 71.0 57.5 −0.3 N DMB
2010−1323 5.22 22.2 29.4 −23.5 Y SWHL

c© 0000 RAS, MNRAS 000, 000–000
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sar population (see, e.g., Faucher-Giguère & Kaspi 2006;
Lorimer et al. 2006). The observed sample of MSPs is sub-
stantially less numerous because of their generally lower lu-
minosity and observational selection effects. Nevertheless,
the large sky coverage and uniformity of the observing sys-
tems of the multibeam surveys provides an excellent sample
to begin characterizing their population. Recent work by
Lorimer (2013) models this population via Monte Carlo re-
alizations of synthetic pulsars drawn from distribution func-
tions. These synthetic populations are subsequently “ob-
served” with realistic models of the surveys to produce sam-
ples that can be compared with the observed data. In this
paper, we focus on constraining the spin period distribution
of MSPs.

For this study, we define a MSP as a pulsar with
P < 20 ms. Our final sample of 56 MSPs is drawn from
detections by this survey (PMPS), the Swinburne Intermedi-
ate Latitude Survey (SWIL; Edwards et al. 2001), the Swin-
burne High Latitude Survey (SWHL; Jacoby et al. 2007),
the Parkes High Latitude Survey (PH; Burgay et al. 2006),
the Perseus Arm Survey (PA; Burgay et al. 2013), and the
Deep Multibeam Survey (DMB; Lorimer et al. 2013). The
basic parameters of this sample of pulsars are summarized
in Table 3. For the purposes of population analyses, this
sample of pulsars is a very natural one to analyse, since the
pulsars were found using the same telescope, receiver and
data acquisition system. Since the sensitivity of this system
is well understood (Manchester et al. 2001; Lorimer et al.
2006), our survey models are reliable. In addition, since the
surveys were all carried out at 20 cm wavelength, we need
not make assumptions about MSP flux density spectra in or-
der to extrapolate results from surveys carried out at other
frequencies.

3.1 Likelihood analysis description

Following earlier work (e.g., Cordes & Chernoff 1997), we
adopt a likelihood analysis to constrain the period distribu-
tion. In our approach to this problem, the probability pi of
detecting pulsar i in the sample with period Pi, and disper-
sion measure DMi can be written as follows:

pi = f(P | a, b)D(Pi,DMi). (2)

In this expression, as usual in statistical parlance, the
“|” symbol denotes a conditional probability. The quantity
f(P | a, b) represents the probability density function (PDF)
of the period which we seek to constrain. All the models
considered in this work can be described by two parame-
ters which we refer to here generally as a and b. Specific
parameters will be defined below. The detectability func-
tion, D, reflects the probability of detecting the pulsar in
one of the six surveys mentioned above and therefore appro-
priately accounts for their non-uniform period sensitivity.
Note that in this analysis, we assume that any loss of sen-
sitivity due to binary motion is negligible given the signifi-
cant number of acceleration searches that have been carried
out on these data (Faulkner et al. 2004; Knispel et al. 2013;
Eatough et al. 2013).

Given a model period PDF and a detectability model
which we describe in detail below, the likelihood function
L(a, b) for a given combination of a and b is simply the
product of all the 56 individual pi values. The optimal set

of model parameters â and b̂ are those which maximize L in
a grid of parameter space over a and b. Once the maximum
likelihood Lmax has been found, the marginalized PDF for
a is then simply the distribution of L(a, b̂) (and vice versa
for the PDF of b). This approach provides PDFs for a and
b as well as a means for evaluating different period PDFs
from the ratio of the maximum likelihoods (i.e., the Bayes
factor, K). For example, given two model PDFs “x” and
“y”, K = Lmax,x/Lmax,y > 1 if model x better describes
the sample than model y. According to Jeffreys (1961), a
Bayes factor of between 1 and 3 is deemed to be essentially
indistinguishable from the best model while Bayes factors
in the range 3–10 begin to favour x over y. Bayes factors
higher than 100 decisively favour x.

3.2 Detectability model

The detectability of a given pulsar, D, reflects how likely it is
to be found in the sample of 56 MSPs we will ultimately be
applying this analysis to. Calculating D therefore requires
accurately accounting for the difficulties in detecting each
pulsar. Two approaches that can be brought to bear on this
problem are to: (i) run large numbers of Monte Carlo simu-
lations which model the detectability; (ii) develop a simple
analytical model. After initial experimentation with the first
approach, it became clear to us that the Monte Carlo simu-
lations require a large number of assumptions and significant
computational resources to carry out a sufficient number of
realizations necessary to estimate D. We therefore followed
the second approach and calculate D for each MSP in our
sample. The essence of our approach, described in detail
below, is to find for any line of sight the flux density distri-
bution of pulsars: p(S). The detectability of a pulsar along
this line of sight is then the fraction of such pulsars visible
by a survey. For the ith pulsar, we may therefore write

Di =

∫

∞

Smin,i
p(S)dS

∫

∞

S0

p(S)dS
. (3)

Here Smin,i is the minimum detectable survey flux density of
this pulsar which we compute from its pulse period, disper-
sion measure and pulse width (an intrinsic pulse duty cycle
of 10% was assumed for each pulsar). The term S0 repre-
sents the lowest flux density detectable in the survey, i.e the
limit of Smin,i as P becomes large and DM tends to zero.
In paper VI of this series (Lorimer et al. 2006), we gave ex-
pressions for computing Smin,i and refer the reader to this
work for details. The advantage of this approach to the prob-
lem is that it does not depend on knowledge of individual
distances to MSPs, which are uncertain. The analysis also
does not depend on detected signal-to-noise or flux densi-
ties for any individual pulsars. Instead it takes advantage of
prior information about the pulsar population to calculate
p(S) rigorously. As we show below, the final determination
of the detectability function for this sample of pulsars can
be given in terms of only two parameters which are robust
to uncertainties inherent in the assumptions.

The calculation of p(S) is most readily achieved from
an application of Bayes’ theorem which implies for a given
line of sight the following relationship between PDFs in flux
density S and distance D:

p(D|S) ∝ p(S|D)p(D). (4)

c© 0000 RAS, MNRAS 000, 000–000
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Figure 3. Detectability as a function of period (in ms) and dis-
persion measure (in cm−3 pc). The data points show our esti-
mates of detectability for each pulsar which we compute as de-
scribed in the text. The grid shows our best approximation to
this behaviour using the two-dimensional detectability function
defined in equation 9 assuming the parameters α = 10 ms and
β = 110 cm−3 pc. For each data point, a vertical line is drawn
showing its distance from the best-fitting surface.

Because the distribution we seek, p(S), is simply p(S|D)
marginalized over distance, we can use Eq. 4 to show that

p(S) =

∫

∞

0

p(S|D)dD ∝

∫

∞

0

p(D|S)

p(D)
dD. (5)

To get expressions for p(D|S) and p(D), we use the results
described in §3.3 of Verbiest et al. (2012). In this work, as-
suming a log-normal pulsar luminosity function (see, e.g.,
Faucher-Giguère & Kaspi 2006) with mean µ and standard
deviation σ, it is shown that

p(D|S) ∝
1

D
exp

[

−
1

2

(

log S + 2 logD − µ

σ

)2
]

. (6)

Verbiest et al. (2012) also show that, along a line of sight
defined by Galactic longitude l and latitude b, an axisym-
metric distribution of pulsars with the radial density profile
found in paper VI leads to the result

p(D) ∝ R1.9D2 exp

[

−
|z|

h

]

exp

[

−ρ
|R −R0|

R0

]

. (7)

In this expression, z = D sin b is the vertical height off the
Galactic plane, h is the scale height of pulsars, ρ is a di-
mensionless parameter used to scale the population over the
Galactic disk, R0 = 8.5 kpc is the Galactocentric radius of
the Sun and the pulsar Galactocentric radius

R =
√

R2
0 + (D cos b)2 − 2R0D cos b cos l. (8)

With these analytical results it is then straightforward us-
ing numerical integration of Eq. 5 to find the appropriate
form of p(S) for each l and b. This PDF is then numerically
integrated according to the limits in Eq. 3 to find Di.

Following the results of Bagchi et al. (2011) and
Lorimer (2013), we adopted nominal parameter values of
h = 500 pc, ρ = 5, µ = −1.1 and σ = 0.9. Fig. 3 shows

the results of this calculation on our sample of 56 pulsars as
scatter plots of D as a function of P and DM. As expected,
D is lower for shorter period and/or higher DM pulsars. To
approximate this trend in the likelihood analysis, we set

D = [1− exp(−P/α)] exp(−DM2/2β2), (9)

where simple fits to the data show that α ≃ 10 ms and
β ≃ 110 cm−3 pc provide a good description of these trends,
as shown by the smooth surface in Fig. 3. The root-mean-
square deviation of the data from this surface is 0.1. As de-
scribed in §3.5, while the choice of duty cycle or population
parameters assumed in the detectability analysis impacts
the values of α and β somewhat, the particular values of α
and β do not significantly affect our conclusions.

3.3 Period distributions investigated

We considered a variety of analytical functions to find the
PDF which best describes the spin period of the MSP popu-
lation. The simplest case of a uniform distribution is clearly
not favoured by the data. In preliminary investigations we
found Bayes factors relative to other models of order 10−12

and disregarded it from further analysis. Better approxima-
tions to the true period PDF can be found by considering
functions with some well defined peak. All four functional
forms we investigate henceforth (i.e., Gaussian, gamma, log-
normal and power law distributions) require two parameters.
In a similar way to paper VI, we refer to these parameters
using capital letters. The Gaussian distribution has a mean
A and standard deviation B:

f(P )gauss ∝ exp

[

−(P −A)2

2B2

]

. (10)

The gamma distribution is parameterized by C and D:

f(P )gamma ∝ exp(−P/C)(P/C)D−1. (11)

The log-normal distribution is parameterized by E and F :

f(P )lnorm ∝
1

P
exp

[

−(ln(P )− E)2

2F 2

]

. (12)

We also considered a power-law distribution parameterized
by an exponent G and a minimum period H as follows:

f(P )power = 0 forP ≤ H, (13)

f(P )power ∝ PG forP > H andP < 20 ms, (14)

f(P )power = 0 forP ≥ 20 ms. (15)

Note that the last boundary condition simply reflects our
definition of a MSP as a pulsar with P < 20 ms.

3.4 Application to the observed sample

Using the above method, we maximize L for each of the
period distribution models. A program was written4 to im-
plement the analysis and derive marginalized PDFs of the
resulting model parameters. For each model, we normalized
the detection probability and period distribution such that
∫

∞

0

D(P,DM) f(P | a, b) dP = 1. (16)

4 http://psrpop.phys.wvu.edu/pdist
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Figure 4. Left and centre columns: marginalized posterior PDFs for each of the model parameters A—H (see equations 10—15 for
definitions) obtained from the likelihood analysis described in the text. Right column: corresponding PDF for f(P ) for each distribution
when the nominal parameter values given in Table 4 are adopted.

Table 4. Results of the likelihood analysis for the period distri-
bution models considered. For each model we list the median and
95% confidence interval on the parameters defined in equations
10—15 along with the Bayes factor (K) computed by dividing
the log-normal model likelihood by the likelihood of that model.

Model First parameter Second parameter K

Gaussian A = 0.7+1.7
−0.6

ms B = 5.8+1.0
−0.8

ms 738

Gamma C = 2.3± 0.4 ms E = 2.2+0.4
−0.3 13

Log-normal E = 1.5± 0.2 F = 0.58+0.12
−0.09 1

Power-law G = −1.7± 0.4 H = 1.51+0.05
−0.20

ms 182

This normalization ensures that the resulting likelihood val-
ues can be compared with one another to compute Bayes
factors. In the results below, we give the Bayes factors for
the best model relative to each model under consideration.

The results of our analysis when applied to the observed
sample of 56 pulsars are summarized in Fig. 4 and Table 4.
Fig. 4 shows the marginalized posterior PDFs for each of the
model parameters. Table 4 lists the 95% credible intervals
for all the model parameters. The highest likelihood values
were obtained for the log-normal model. The Bayes factors
of the other models relative to this one are also given in Ta-

ble 4. These results indicate that the log-normal and gamma
distributions give by far the most plausible descriptions of
the MSP spin period distribution.

3.5 Testing the validity of the analysis

Before discussing the impact of our results, it is important
to demonstrate the reliability of the parameter estimation
approach and its sensitivity to assumptions. To do this, we
generated fake samples of detectable pulsars with known pe-
riod distributions and passed these as input to the likelihood
analysis. We used the psrpop software package5 introduced
in paper VI (see also Lorimer 2013) to generate synthetic
populations of MSPs for this purpose. As a starting point
we distributed the model pulsars with model parameter val-
ues of h = 500 pc, ρ = 5, µ = −1.1 and σ = 0.9. For the
period distribution, we then chose each of the four distribu-
tions in turn and set the parameters A–H to be the notional
values given in Table 4 from our analysis of the real data.
In each simulation, we generated enough synthetic pulsars
such that a total of 56 of them were detectable by models

5 http://psrpop.sourceforge.net
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of the PMPS, Parkes high-latitude (PH), Perseus arm (PA),
Deep Multibeam (DMB), Swinburne intermediate latitude
(SWIL) and Swinburne high latitude (SWHL) surveys avail-
able in psrpop. With each synthetic sample, we first carried
out a detectability analysis as described in §3.2 to deter-
mine values of the detectability-model parameters α and β
and then applied these in our likelihood analysis. We found
that the returned parameter values A–H from the likelihood
analysis were entirely consistent with the input values of the
period distribution of the parent population. In addition,
we found that the method consistently favored the correct
form of the input distribution by assigning it the maximum
likelihood. For example, when we generated synthetic popu-
lations assuming a log-normal distribution, we consistently
found the Bayes factors for the log-normal likelihood model
to be lower than the other distributions, as is seen for the ac-
tual sample of MSPs. Similar results were found when other
underlying period distributions were assumed.

While the above results are very encouraging, they rep-
resent idealized conditions in which we input the actual val-
ues of h, ρ, µ and σ into the detectability analysis to de-
termine α and β. In reality, of course, these numbers are
not known and are only approximations to the true distri-
bution of MSPs. To examine how robust the analysis is to
changes in the assumed duty cycle, h, ρ, µ and σ, we re-
peated the above procedure over a range of values to deter-
mined α and β. The ranges we explored were 5–30% duty
cycles, 300 < h < 900 pc, 4 < ρ < 6, −2.5 < µ < −1.5
and 0.3 < σ < 1.5. Although these led to variations in the
detectability parameters in the ranges 2 < α < 15 ms and
100 < β < 300 cm−3 pc, we still found that the input pa-
rameter distributions were recovered and that the correct
distribution was favored. An example of this is shown in
Fig. 5 in which we see the inferred PDFs from an analysis
of a fake population with a log-normal period distribution.
These results give us confidence that our analysis on the ob-
served sample of 56 MSPs is providing reliable insights into
their underlying spin period distribution, f(P ).

3.6 Discussion

Based on the analysis presented in this paper, we have found
evidence favoring the underlying spin period distribution of
Galactic MSPs to be log-normal in form. While a gamma
distribution is compatible with the data, it is less favoured
than the log-normal. Uniform, power-law and Gaussian dis-
tributions are decisively ruled out in our likelihood analysis
as being good descriptions to f(P ). We note that the strong
preference for a log-normal model found here is in contrast to
the power-law model proposed by Cordes & Chernoff (1997)
based on a much smaller sample of MSPs. While the expo-
nent of our power-law model tested here (–1.7) is consistent
with theirs, the likelihood analysis strongly favors the log-
normal model.

While our likelihood analysis weighs the different distri-
butions we tested against each other, some measure of the
absolute agreement between the log-normal model and the
observed sample of 56 MSPs can be found by comparing
the sample with the predicted observed period distribution
for this model. Combining our detectability model and log-
normal period distribution, the observed period distribution
takes the form
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Figure 6. A comparison of the sample of 56 MSPs considered
in this paper with our best-fitting period distribution from Equa-
tion 17 (solid line).

fobs(P ) ∝
1

P
exp

[

−(ln(P )− E)2

2F 2

]

(

1− exp
[

−P

α

])

, (17)

where the log-normal parameters E = 1.5 and F = 0.58 and
the detectability parameter α = 10 ms. As can be seen from
the comparison of this function with the binned data from
the 56-MSP sample in Fig. 6, the agreement is excellent,
with the reduced χ2 value being 1.1.

Since the sample of MSPs used in this analysis is based
on surveys carried out a decade ago, it is useful to confront
the distribution we obtained with the present sample of ob-
jects. This is shown in cumulative form in Fig. 7 where it is
seen that the 95% credible region of log-normal functions we
derive is broadly compatible with the present sample of 228
MSPs which have been detected in the Parkes High Time
Resolution Universe Surveys (Keith et al. 2010; Barr et al.
2013), targeted searches of Fermi sources (Ray et al. 2012)
and also in surveys at lower frequencies with Arecibo and
Green Bank (Deneva et al. 2013; Stovall et al. 2014). We
note that the observed sample lies to the upper end of the
95% credible region shown in Fig. 7. Future studies of this
newer larger sample of MSPs should, therefore, provide more
stringent constraints on the period distribution.

The general agreement with our log-normal model and
the present sample of MSPs suggests that the period-
dependent selection effects on these “first generation” Parkes
multibeam surveys (i.e., PMPS, PM, PA, SWIL, SWHL and
DMB) which we model in our detectability function are
much less severe in the present generation of MSP surveys.

4 CONCLUSIONS

We have presented timing models for four MSPs found as
part of the Parkes Multibeam Pulsar survey of the Galactic
plane. From a likelihood analysis of the sample of 56 MSPs
detected with this earlier generation of Parkes multibeam
pulsar surveys, we demonstrate that the underlying popu-
lation of spin periods for MSPs is compatible with a log-
normal distribution. When this distribution is confronted
with more recent discoveries from other surveys, we see that

c© 0000 RAS, MNRAS 000, 000–000
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Figure 5. Marginalized PDFs for the log-normal parameters E and F deduced from a fake population in which the true values were
E = 1.4 and F = 0.46 shown as dashed vertical lines. In this case, the assumed population parameters for the detectability analysis were
intentionally biased to be h = 900 pc, ρ = 4, µ = −2.1 and σ = 0.5 and lead to a detectability model with α = 2.2 and β = 200. Even
with such a bias, the PDFs successfully encompass the true population values and favor the log-normal model by an order of magnitude
over the three other models.

it is broadly consistent with the new results. It is important
to note that the distribution we have derived here applies
to the present-day MSP population. Although to first or-
der, because of the very low spin-down rates of MSPs, the
birth spin-period distribution may not be significantly dif-
ferent (see, e.g., Camilo et al. 1994), further investigations
are necessary to confirm this conjecture.

Although the true period distribution for MSPs may
not be as simple as our analysis might initially suggest, it
is clear that the distributions considered here all allow for
the existence of a small fraction of pulsars with P < 1.5 ms.
Based on the smooth curves shown in Fig. 7, the fraction of
such pulsars in the population is around 3%. The true frac-
tion could even be higher than this if we have overestimated
the detectability of such rapidly spinning pulsars. Given our
estimate of the analytic form of the observed period distri-
bution given in Equation 17, we find that the probability of
not detecting a pulsar in our sample of 56 MSPs with period
P < 1.5 ms in the current sample is 99.2%. This is entirely
consistent with the lack of such pulsars in the sample so far.
Further discussion about the possibility of sub-millisecond
pulsars can be found in Levin et al. (2013) and references
therein.

An inspection of the current sample of MSPs shows
no statistically significant difference between the spin pe-
riod distributions of isolated objects versus binary sys-
tems. A useful approach which is currently being pursued
(P. Lazarus, private communication) is to artificially add
short period signals to existing search data sets and directly
test the effectiveness of pulsar search codes in recovering
these signals. The modeling techniques presented here may
be useful in further analyses of the MSP population which
need to take account of the different selection biases and
observing frequencies that have taken place since the com-
pletion of the initial Parkes multibeam surveys. The tech-
niques may also be applied to other population parameters
in which selection effects may be apparent, for example the
P − Ṗ distribution.
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