59 research outputs found

    Role of deformation on giant resonances within the QRPA approach and the Gogny force

    Full text link
    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed 2628^{26-28}Si and 2224^{22-24}Mg nuclei as well as in the spherical 30^{30}Si and 28^{28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.Comment: 12 pages, 6 figures and 4 tables, accepted in PR

    COMPLIS experiments : COllaboration for spectroscopy Measurements using a Pulsed Laser Ion Source

    Get PDF
    Laser spectroscopy measurements have been carried out on very neutron-deficient isotopes of Au, Pt and Ir, produced as daughter elements from a Hg ISOLDE beam. For these transitional region nuclides, the hyperfine structure (HFS) and isotope shift (IS) were measured by Resonance Ionization Spectroscopy (RIS). Magnetic moments μ, spectroscopic quadrupole moments Qs and changes of the nuclear mean square charge radius δ〈rc 2〉along isotopic series have been extracted. For some results, a detailed comparison with theoretical predictions is presented. (Springer

    Unexpected high-energy γ emission from decaying exotic nuclei

    Get PDF
    Abstract The N = 52 Ga 83 β decay was studied at ALTO. The radioactive 83Ga beam was produced through the ISOL photofission technique and collected on a movable tape for the measurement of γ-ray emission following β decay. While β-delayed neutron emission has been measured to be 56–85% of the decay path, in this experiment an unexpected high-energy 5–9 MeV γ-ray yield of 16(4)% was observed, coming from states several MeVs above the neutron separation threshold. This result is compared with cutting-edge QRPA calculations, which show that when neutrons deeply bound in the core of the nucleus decay into protons via a Gamow–Teller transition, they give rise to a dipolar oscillation of nuclear matter in the nucleus. This leads to large electromagnetic transition probabilities which can compete with neutron emission, thus affecting the β-decay path. This process is enhanced by an excess of neutrons on the nuclear surface and may thus be a common feature for very neutron-rich isotopes, challenging the present understanding of decay properties of exotic nuclei

    Gamow-Teller strength in deformed nuclei within the self-consistent charge-exchange quasi-particle random-phase approximation with the Gogny force

    Get PDF
    The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently taken into account, both in the description of the ground-states and spin-isospin excitations. We focus on the isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used to estimate the β - decay half-life of nuclei for which experimental data exist. A satisfactory agreement with experimental half-lives is found and justifies the additional study of the exotic neutron-rich N=82, 126, and 184 isotonic chains of relevance for the r-process nucleosynthesis. © 2014 American Physical Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore