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The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron
quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters
beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently
taken into account, both in the description of the ground-states and spin-isospin excitations. We focus on the
isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing
experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used
to estimate the β−-decay half-life of nuclei for which experimental data exist. A satisfactory agreement with
experimental half-lives is found and justifies the additional study of the exotic neutron-rich N = 82, 126, and
184 isotonic chains of relevance for the r-process nucleosynthesis.
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I. INTRODUCTION

Spin-isospin nuclear excitations [1], in particular the
Gamow-Teller (GT) resonances, nowadays play a crucial role
in several fields of physics. First, in fundamental nuclear
physics by providing information on the nuclear interaction,
the equation of state of asymmetric nuclear matter, as well as
the nuclear skin thickness [2]. Second, in astrophysics where
they govern β decay, electron and neutrino capture processes,
hence stellar evolution and nucleosynthesis [3,4]. Finally, in
particle physics in connection with the evaluation of the Vud

element and the unitarity of the Cabibbo-Kobayashi-Maskawa
quark-mixing matrix [5], on the one hand, and with neutrino
physics beyond the standard model (neutrinoless double beta
decay [6–8] and neutrino oscillation [9,10]), on the other hand.

Experimentally, the spin-isospin nuclear excitations are
studied via charge-exchange reactions, such as (p,n), (n,p),
(d,2He), (3He,t) or (t ,3He) and β-decay measurements. In spite
of the great efforts and interest, the whole nuclear chart is still
not experimentally accessible, so that for the exotic nuclei,
one can rely on theoretical models only. In this context one
of the most popular models is the so-called proton-neutron
quasiparticle random-phase approximation (pnQRPA), first
introduced in Ref. [11]. For a reliable prediction of the
spin-isospin nuclear excitations, especially for experimentally
unknown nuclei, two main features of the theoretical model
are in order: the possibility to deal with deformed nuclei and
the use of a unique effective nuclear force. The term unique
has two different meanings here. First of all, it implies that
the interaction is the same for all nuclei, second, that the
nuclear interaction used to describe the ground and excited
states is the same; this latter property is usually referred as the
self-consistency of the calculation. Despite the relatively large
number of pnQRPA calculations (see, e.g., Refs. [12–25] and
references therein), the number of models, nowadays including
both features, remains small. Furthermore, even in the limited
number of self-consistent calculations performed either with
the zero-range Skyrme-type forces or in the relativistic

mean-field framework, there often remains a coupling con-
stant, typically in the particle-particle channel, which is treated
as a free parameter usually adjusted to β-decay half-lives or to
the position of GT excitation energies. The possibility to take
into account the nuclear deformation is also very important.
The β-decay properties of exotic neutron-rich nuclei (in
particular those of interest to the r-process nucleosynthesis [3])
as well as the nuclear matrix elements for the double β decay
have been shown to depend significantly on the deformation
parameter [24–27]. Furthermore, deformed nuclei present a
strong fragmentation in the response functions and different
nuclear shapes can be experimentally distinguished.

Here, we present a fully self-consistent axially symmetric-
deformed pnQRPA calculation without any additional pa-
rameters beyond those characterizing the effective nuclear
force, namely the finite-range Gogny force within its two
parametrizations, D1M [28] and D1S [29]. This work repre-
sents a transposition to the charge-exchange sector of the fully
consistent axially symmetric-deformed QRPA calculations
with the Gogny force, first presented in Ref. [30] and devoted
to the study of electromagnetic excitations in deformed
nuclei [31,32]. In Sec. II, the pnQRPA formalism is detailed.
In Sec. III, the resulting GT and isobaric analog resonance
(IAR) strength are analyzed and compared to the experimental
data. Based on the GT strength, the β−-decay half-lives are
predicted and compared to the experimental data and other
models in Sec. IV. Finally, conclusions and perspectives are
given in Sec. V.

II. FORMALISM

Our approach is based on the pnQRPA on top of axially
symmetric-deformed Hartree-Fock-Bogoliubov (HFB) calcu-
lations. The HFB equations are solved in a finite harmonic
oscillator basis. As a consequence, the positive energy contin-
uum is discretized. All HFB quasiparticle states are used to
generate the two-quasiparticle (2-qp) excitations. This means
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that, in principle, our calculation can be performed without
a cut in energy or in occupation probabilities. According to
the symmetries imposed in the present axially symmetric-
deformed HFB calculations in even-even nuclei, the projection
K of the angular momentum J on the symmetry axis and the
parity � are good quantum numbers. Consequently, pnQRPA
calculations can be performed separately in each K� block.
In this context, phonons are characterized by the excitation
operator

θ+
α,K =

∑
pn

X
pn
α,Kη+

p η+
n − (−)KY

pn
α,Kηnηp, (1)

where η+ and η are the quasiparticle operators, related to the
particle creation (c+) and annihilation (c) operators through
the u and v Bogoliubov transformation matrices; for example,

η+
p = upπc+

π − vpπcπ . (2)

Here and in the following, repeated indices are implicitly
summed over; p, n and π , ν denote proton and neutron
quasiparticle and harmonic oscillator states, respectively. In
the well-known QRPA matrix equation

(
A B

B A

) (
Xα,K

Yα,K

)
= ωα,K

(
Xα,K

−Yα,K

)
, (3)

where ωα,K are the energies of the pnQRPA excited states of
the parent nucleus, the matrices A and B take, in the case of
charge-exchange excitations, the following form:

Apn,p′n′

= (εp + εn)δpp′δnn′

+upπvnνup′π ′vn′ν ′(〈πν ′|V |νπ ′〉 − 〈πν ′|V |π ′ν〉)
+ vpπunνvp′π ′un′ν ′(〈νπ ′|V |πν ′〉 − 〈νπ ′|V |ν ′π〉)
+upπunνup′π ′un′ν ′(〈πν|V |π ′ν ′〉 − 〈πν|V |ν ′π ′〉)
+ vpπvnνvp′π ′vn′ν ′ (〈π ′ν ′|V |πν〉 − 〈π ′ν ′|V |νπ〉) (4)

and

Bpn,p′n′

= upπvnνvp′π ′un′ν ′(〈πν ′|V |νπ ′〉 − 〈πν ′|V |π ′ν〉)
+ vpπunνup′π ′vn′ν ′ (〈νπ ′|V |πν ′〉 − 〈νπ ′|V |ν ′π〉)
+upπunνvp′π ′vn′ν ′ (〈πν|V |ν ′π ′〉 − 〈πν|V |π ′ν ′〉)
+ vpπvnνup′π ′un′ν ′ (〈π ′ν ′|V |νπ〉 − 〈π ′ν ′|V |πν〉). (5)

As already emphasized, we use the same nucleon-nucleon
effective Gogny force (more exactly the D1M or D1S
parametrizations), both for the HFB and QRPA calculations in
all particle-hole (ph), particle-particle (pp), and hole-hole (hh)
channels. This procedure is important to avoid numerical and
physical inconsistencies. To solve the QRPA matrix equation
we use the same numerical procedure recently applied to study
the giant resonances of the heavy deformed 238U [31]. It is
based on a massive parallel master-slave algorithm. For a single
solution of Eq. (3) the QRPA provides the set of amplitudes
Xα,K and Yα,K describing the wave function of the excited
state |α,K〉 = θ+

α,K |0〉 in terms of the 2-qp excitations.

Once the pnQRPA matrix equation is solved we can
calculate the response to the Fermi, or isospin lowering,
operator

ÔIAR =
A∑

i=1

τ−(i) (6)

obtaining the IAR, the simplest charge-exchange transition in
which a neutron is changed into a proton without any other
variation of the quantum numbers. In an axially symmetric-
deformed nuclear system, the response function of a given J�

contains different K� = 0�,±1�, . . . ,±J� components. In
spherical nuclei, all these components are degenerate in energy,
so that the response functions associated with any multipolarity
can be directly deduced from the K� = 0± result. In the case
of the IAR the J� = 0+ distribution is obtained performing
the pnQRPA calculation for K� = 0+. For the GT excitations,
the external operator reads

ÔGT =
A∑

i=1

�σ (i)τ−(i) (7)

generating a spin-flip (�S = �J = 1) response. In this case,
the GT J� = 1+ distributions are obtained by adding twice
the K� = 1+ component to the K� = 0+ result. Details to go
from intrinsic to laboratory frame can be found in Ref. [30].

III. RESULTS

As test case, we first consider the closed neutron-shell
nuclei 90Zr and 208Pb, as well as neutron open-shell nucleus
114Sn. In the upper and middle panels of Fig. 1, their Fermi
and GT strength distributions calculated with D1M and D1S
interactions are compared to the experimental data [33–35].
Even if, in principle, our calculation can be performed without
a cut in energy, in practice we consider here 2-qp states up to
an energy of 70 MeV, which turns out to be large enough to
totally exhaust the Fermi and Ikeda sum rules. The results are
expressed as a function of the excitation energy Eex referred
to the ground state of the daughter nucleus. In our model,
it is obtained by subtracting a reference energy E0 from the
excitation energy ωα,K of the parent nucleus calculated in
the pnQRPA, i.e., Eex = ωα,K − E0. The reference energy
corresponds to the lowest 2-qp excitation associated with
the ground state of the odd-odd daughter nucleus in which
the quantum numbers of the single quasiproton and neutron
states are obtained from the self-consistent HFB calculation
of the odd-odd system. We remind that for even-even nuclei,
the HFB ground state |0̃〉 is assumed to be an independent
quasiparticle state |0̃〉 = ∏

i=1ηi |−〉 (quasiparticle vacuum).
However, for an odd-odd system, the HFB equations involve
a ground state |πν〉 described as a 2-qp (proton neutron)
excitation on top of a qp vacuum |0̃πν〉: |πν〉 = η′+

π η′+
ν |0̃πν〉

with |0̃πν〉 = ∏
i=1η

′
i |−〉; π (ν) running over proton (neutron)

qp states. In practice, we perform several “blocked” HFB
calculations (obtained through the minimization of the total
binding energy with respect to the ground state |πν〉), each
of them corresponding to a specific choice of the proton
and neutron qp quantum numbers. The couple (η′

π , η′
ν)

044306-2



GAMOW-TELLER STRENGTH IN DEFORMED NUCLEI . . . PHYSICAL REVIEW C 89, 044306 (2014)

0 10 20 30
0

1

2

3

4

S
G

T
 [

M
eV

-1
] D1M

D1S
Exp

0 10 20 30
E

ex
 [MeV]

0

1

2

3

4

0 10 20 30
0

5

10

15
90

Zr
114

Sn
208

Pb

0

5

10

15

20

S
G

T

D1M
D1S
Exp

0

5

10

15

20

25

0

20

40

60

80

100
90

Zr
114

Sn
208

Pb

0

2

4

6

8

10

S
IA

R

D1M
D1S
Exp

0

4

8

12

16

20

0

10

20

30

40

50
90

Zr
114

Sn
208

Pb

FIG. 1. (Color online) pnQRPA Fermi (upper panels) and GT
(middel panels) strength distributions in 90Zr, 114Sn, and 208Pb
calculated with the D1M and D1S forces. The experimental energy
peaks obtained from scattering data [33–35] are shown as diamonds
on the x axis. The lower panels show the folded GT strengths and the
comparison with experimental data available for 90Zr [33].

that gives the lowest binding energy among the different
HFB calculations is selected, and the corresponding quantum
numbers of the odd-odd HFB ground state (spin and parity)
deduced. Such a procedure allows us to determine consistently
the quantum characteristics of the reference 2-qp excitation in
the parent nucleus. In most cases, the reference energy E0 is
equal to the lowest energy of the 2-qp excitation of ph type.

Both interactions give quite similar results for the position
of the main peak. A one-to-one correspondence between
the predicted main peaks is found. The energy position of
the experimental IAR is quite well reproduced. The IAR
is experimentally known to be characterized by a single
narrow state. This is the case not only of the 208Pb but also
for the open shell 114Sn. The result for 114Sn reflects the
right contribution of the pp channel to the proton-neutron
residual interaction, without which the response function will
be fragmented [20]. The situation is slightly different for
90Zr where two states very close to each other, probably
experimentally undistinguishable, appear. Note that our HFB
calculations only includes the direct contribution of the
Coulomb interaction, while the Coulomb exchange part is
not taken into account. This approximation overestimates the
proton pairing in general [36], and in 90Zr in particular. For this
nucleus we repeated the calculation of the IAR starting from
HFB calculations including direct and exchange Coulomb
fields and obtained a disappearance of the fragmentation.
However, since no Gogny interaction has yet been derived
including the Coulomb contribution to the pairing field, we
will restrict ourselves here to the standard HFB calculations

FIG. 2. (Color online) The experimental GT widths of Sn iso-
topes [35] and the adopted parametrization (solid line).

as a starting point for our pnQRPA calculation. We have also
checked that switching-off the Coulomb interactions in HFB
calculations brings the IAR down to zero energy.

Turning to the GT (middle panel of Fig. 1), the D1M
interaction is seen to give rise to a strength located at lower
energies with respect to the one found with D1S. For the
nuclei analyzed here, this energy shift rarely exceeds 0.5 MeV.
In this context, it should be recalled that the D1M and D1S
interactions are characterized by rather different parameters,
leading to different nuclear matter properties and Landau
parameters. The GT energy is known to be sensitive to the
single-particle spectrum as well as to the Landau parameter, in
particular g′

0 [18,37,38]. More specifically, there is a general
tendency for the GT energy to increase with increasing spin-
orbit strength parameters WLS and with increasing values of
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FIG. 3. (Color online) pnQRPA GT strength distributions in 76Ge
obtained with the D1M force for several values of the deformation
parameter β2, including the HFB ground-state minimum at β2 = 0.15.
The experimental low-energy data [45] as well as the energy position
of the main GT peak are also shown.
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FIG. 4. (Color online) pnQRPA GT strength distributions in 76Ge
with the D1M force for β2 = 0 and β2 = 0.15 folded as described in
the text. For comparison, the experimental strength [46] folded in a
similar way is also given.

g′
0, though this latter tendency may be less clear (see Ref. [38]

for more details). For the interactions considered here, WLS =
115.4 MeV fm5 for D1M and 130.0 MeV fm5 for D1S while
g′

0 = 0.71 for D1M and 0.61 for D1S. Even if the total effect
on the energy position of the GT peak is a delicate balance
between the effects related to the single-particle spectrum
(particularly sensitive to the spin-orbit strength), the residual
interaction (strictly related to the Landau parameter g′

0) as well
as the E0 shift, the systematic (small) D1S overestimate of the
GT energy with respect to D1M seems to suggest that the WLS

parameter plays the major role.
As far as the comparison with experimental data is

concerned, the agreement is seen to be rather satisfactory
(Fig. 1). A small but systematic overestimate of the GT peak
is found. Particle-vibration coupling [38,39] as well as tensor
interaction contribution [40], both absent in our approach, have

been shown to lead to a small shift of the giant GT resonance
towards lower energies.

Our pnQRPA calculation provide a discrete strength dis-
tribution. To derive a smooth continuous strength function,
the pnQRPA GT strength can be folded with a Lorentz
function, as classically done. To do so, the spreading width
� is parametrized to reproduce the experimental GT widths
found experimentally in Sn isotopes with A = 112–124 [35],
as shown in Fig. 2. The spreading width can be parametrized
as �[MeV] = 1 + 0.055E2

ex (where the excitation energy Eex

is expressed in MeV) with an upper value limited to 6 MeV.
The folded GT strength for 90Zr, 114Sn, and 208Pb are shown

in the lower panel of Fig. 1 and compared to the experimental
data in the case of 90Zr [33]. The agreement of our calculation
with the experiment is reasonable. The double peaks structure,
the position of the low-energy peak, as well as the width
of the higher resonance are rather well reproduced while,
as already discussed, the centroid energy peak of the higher
resonance is overestimated. In the case of the 114Sn and 208Pb
only experimental counts of the (3He,t) reaction are available,
hence a quantitative comparison of the GT strengths is not
straightforward.

The above results refer to three spherical nuclei. As
already emphasized, our approach describes axially symmetric
deformed nuclei. As an example for a deformed nucleus,
we consider 76Ge, a nucleus of particular interest in the
neutrinoless double β-decay experiments in the past [41,42],
present [43], and future [44].

We show in Fig. 3 the 76Ge GT excitations obtained
with the D1M interaction for four different values of the
quadrupole deformation parameter β2, including the HFB
minimum at β2 = 0.15. As expected, the deformation tends
to increase the fragmentation of the response. Calculations
with different deformations produce peaks that are displaced.
This is true not only for the giant resonance region but also
for the low-energy states. Recently the low-energy part of
the GT excitations of the 76Ge has been studied with high

FIG. 5. (Color online) Ratio between the pnQRPA (obtained with the D1M interaction) and experimental [49] β-decay half-lives as a
function of A, β2, and Qβ for 145 even-even nuclei with an experimental half-life T1/2 � 1000 s. Error bars only include experimental
uncertainties.
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FIG. 6. (Color online) Comparison between experimental [49]
and D1M + QRPA β-decay half-life predictions for the known
isotopic chains of Kr, Sr, Zr, and Mo.

precision [45] due to its importance for the neutrinoless double
β-decay physics. We show this experimental results in Fig. 3
to compare to our results at different β2. It appears that
deformation effects influence the low-energy strength and that
the spreading of the low-energy GT strength can be rather
well reproduced for deformations around β2 = 0.10–0.15, in
contrast to what is found in the spherical approximation or at
larger deformations. For completeness, we also show in Fig. 4
our folded calculations at β2 = 0 and β2 = 0.15 as well as the
experimental results of Ref. [46] folded in the same way. Also
in this case the agreement between the experimental data and
the β2 = 0.15 case can be considered as satisfactory, at least
better than with the spherical case.

IV. APPLICATION TO HALF-LIFE CALCULATIONS

As a first application of our calculation, we now focus
on the low-energy GT strength and more specifically on the

β−-decay half-lives. In the allowed GT decay approximation
the β−-decay half-life T1/2 can be expressed in terms of the
GT strength function SGT according to

ln 2

T1/2
= (gA/gV )2

eff

D

∫ Qβ

0
f0(Z,A,Qβ − Eex)SGT(Eex)dEex.

(8)

For the phase-space volume f0 as well as the factor D and
the vector and axial vector coupling constants (including
the quenching factor), we refer to the work of the authors
of Ref. [47]. To estimate the Qβ mass differences, we take
experimental (and recommended) masses [48] when available
or the D1M mass predictions [28], otherwise.

To give an idea of the global predictions of our model,
we compare in Fig. 5 for even-even nuclei the pnQRPA
(obtained with the D1M interaction) β−-decay half-lives with
the experimental data [49]. The results are plotted as a function
of the mass number A, the deformation parameter β2, and the
Qβ value. They turn to be quite homogeneous with respect to
A and more particularly β2. Larger deviations are found for
nuclei close to the valley of β stability (Fig. 5, right panel),
i.e., for low-Qβ values, as found in all models. Note, however,
that in Fig. 5 where only nuclei with experimental data are
concerned, large Qβ values essentially correspond to light
nuclei for which mean-field models may be less adequate to
estimate the ground-state deformation, mixing of configuration
being found beyond the mean-field approximation. Globally,
predictions tend to overestimate the experimental half-lives,
but deviations rarely exceed one order of magnitude. Note
that the half-life overestimation found here is less important
that the effect of neglecting pn pairing in relativistic QRPA
calculation [50]. We also compare in Fig. 6 the D1M + QRPA
and experimental half-lives for the much studied isotopic
chains of Kr, Sr, Zr, and Mo, which are strongly deformed.
Here also, the D1M + QRPA model tends to give rise to
half-lives larger than experimental ones, leaving space for
possible additional contributions from forbidden transitions.

FIG. 7. (Color online) Comparison between our β-decay half-life predictions and the DF3 + QRPA calculation of the authors or
Refs. [47,51], including the GT contribution or both the GT plus FF contributions, for the neutron-rich nuclei along the N = 82,126,

and 184 isotones. For the N = 82 isotonic chain, experimental data [49], and shell model results [52] are also shown.
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Finally, our β-decay half-lives are compared to the density
function plus continuum QRPA calculation (DF3 + cQRPA) of
Refs. [47,51] in Fig. 7 for the exotic neutron-rich nuclei along
the N = 82,126, and 184 isotones. We choose to focus on this
region of the nuclear chart due to its relevance to the r-process
nucleosynthesis [3]. Nice agreement with the experimental
data is found for 130Cd and 132Sn. Both the contribution of
the GT and the GT plus first-forbidden (FF) transitions are
given in Fig. 7 for the DF3 + cQRPA calculation to illustrate
the impact of the FF contributions, as predicted by the author
of Ref. [51]. Clearly, such a contribution need to be included
for the N = 184 nuclei and some of the N = 126 nuclei. Our
results give rise to decay half-lives systematically larger than
the DF3 + cQRPA approach. These deviations can originate
from different GT strength, but also different estimates for
the Qβ values or reference energies E0. We also show in the
left panel of Fig. 7 the shell model predictions [52] for some
of the N = 82 nuclei that are in relatively close agreement
with the DF3 + cQRPA calculations and lower than ours. Such
different predictions could have an impact on the production
of the heavy nuclei by the r-process nucleosynthesis, but such
an analysis is postponed to a future study.

V. CONCLUSION

We present here for the first time a fully self-consistent
axially symmetric-deformed pnQRPA calculation based on the
finite-range Gogny force. We applied our model to the analysis
of charge-exchange modes paying a special attention to the
GT resonances. The crucial role of deformation, automatically

included in our approach, was analyzed. The agreement with
experiment is satisfactory both for the strength functions and
the β−-decay half-lives. Our extrapolation of the β-decay
half-lives to the neutron-rich N = 82, 126, and 184 isotones
of astrophysical interest are found to give rise to larger values
with respect to the continuum QRPA calculation of the author
of Ref. [51]. These encouraging results open the way to
further studies in several sectors. In particular, it will become
possible to include the study of IAR and GT resonances in the
procedure of construction and validation of new Gogny-type
forces. In connection with astrophysics the next step of our
work will include forbidden transitions and deal with large-
scale calculations of β-decay half-lives and electron neutrino
capture rates for both even and odd numbers of nucleons to
analyze their impact on the r-process nucleosynthesis. Finally,
from a particle physics point of view, the evaluation within our
model, among others, of the low-energy neutrino-nucleus cross
section and the double-β decay nuclear matrix elements could
shed light on the systematics of nuclear origin to be taken into
account in these rare processes.
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102, 242501 (2009).
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