649 research outputs found
Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)
We study the phase diagram of quark matter at finite temperature (T) and
finite chemical potential (mu) in the strong coupling limit of lattice QCD for
color SU(3). We derive an analytical expression of the effective free energy as
a function of T and mu, including baryon effects. The finite temperature
effects are evaluated by integrating over the temporal link variable exactly in
the Polyakov gauge with anti-periodic boundary condition for fermions. The
obtained phase diagram shows the first order phase transition at low
temperatures and the second order phase transition at high temperatures
separated by the tri-critical point in the chiral limit. Baryon has effects to
reduce the effective free energy and to extend the hadron phase to a larger mu
direction at low temperatures.Comment: 18 pages, 10 figure
MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus.
Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis
Cosmogenic 11C production and sensitivity of organic scintillator detectors to pep and CNO neutrinos
Several possible background sources determine the detectability of pep and
CNO solar neutrinos in organic liquid scintillator detectors. Among such
sources, the cosmogenic 11C nuclide plays a central role. 11C is produced
underground in reactions induced by the residual cosmic muon flux. Experimental
data available for the effective cross section for 11C by muons indicate that
11C will be the dominant source of background for the observation of pep and
CNO neutrinos. 11C decays are expected to total a rate 2.5 (20) times higher
than the combined rate of pep and CNO neutrinos in Borexino (KamLAND) in the
energy window preferred for the pep measurement, between 0.8 and 1.3 MeV.
This study examines the production mechanism of 11C by muon-induced showers
in organic liquid scintillators with a novel approach: for the first time, we
perform a detailed ab initio calculation of the production of a cosmogenic
nuclide, 11C, taking into consideration all relevant production channels.
Results of the calculation are compared with the effective cross sections
measured by target experiments in muon beams.
This paper also discusses a technique for reduction of background from 11C in
organic liquid scintillator detectors, which allows to identify on a one-by-one
basis and remove from the data set a large fraction of 11C decays. The
background reduction technique hinges on an idea proposed by Martin Deutsch,
who suggested that a neutron must be ejected in every interaction producing a
11C nuclide from 12C. 11C events are tagged by a three-fold coincidence with
the parent muon track and the subsequent neutron capture on protons.Comment: 11 pages, 6 figures; added one section detailing comparison with
previous estimates; added reference
The Influence of the effect of solute on the thermodynamic driving force on grain refinement of Al alloys
Grain refinement is known to be strongly affected by the solute in cast alloys. Addition of some solute can reduce grain size considerably while others have a limited effect. This is usually attributed to the constitutional supercooling which is quantified by the growth restriction factor, Q. However, one factor that has not been considered is whether different solutes have differing effects on the thermodynamic driving force for solidification. This paper reveals that addition of solute reduces the driving force for solidification for a given undercooling, and that for a particular Q value, it is reduced more substantially when adding eutectic-forming solutes than peritectic-forming elements. Therefore, compared with the eutectic-forming solutes, addition of peritectic-forming solutes into Al alloys not only possesses a higher initial nucleation rate resulted from the larger thermodynamic driving force for solidification, but also promotes nucleation within the constitutionally supercooled zone during growth. As subsequent nucleation can occur at smaller constitutional supercoolings for peritectic-forming elements, a smaller grain size is thus produced. The very small constitutional supercooling required to trigger subsequent nucleation in alloys containing Ti is considered as a major contributor to its extraordinary grain refining efficiency in cast Al alloys even without the deliberate addition of inoculants.The Australian Research Council (ARC DP10955737)
Self-similar extinction for a diffusive Hamilton-Jacobi equation with critical absorption
International audienceThe behavior near the extinction time is identified for non-negative solutions to the diffusive Hamilton-Jacobi equation with critical gradient absorption ∂_t u − ∆_p u + |∇u|^{p−1} = 0 in (0, ∞) × R^N , and fast diffusion 2N/(N + 1) < p < 2. Given a non-negative and radially symmetric initial condition with a non-increasing profile which decays sufficiently fast as |x| → ∞, it is shown that the corresponding solution u to the above equation approaches a uniquely determined separate variable solution of the form U (t, x) = (T_e − t)^{1/(2−p)} f_* (|x|), (t, x) ∈ (0, T_e) × R^N , as t → T_e , where T_e denotes the finite extinction time of u. A cornerstone of the convergence proof is an underlying variational structure of the equation. Also, the selected profile f_* is the unique non-negative solution to a second order ordinary differential equation which decays exponentially at infinity. A complete classification of solutions to this equation is provided, thereby describing all separate variable solutions of the original equation. One important difficulty in the uniqueness proof is that no monotonicity argument seems to be available and it is overcome by the construction of an appropriate Pohozaev functional
Recommended from our members
The Scrounge-atron: a phased approach to the Advanced Hydrotest Facility utilizing proton radiography
The Department of Energy has initiated its Stockpile Stewardship and Management Program (SSMP) to provide a single, integrated technical program for maintaining the continued safety and reliability of the nation's nuclear weapons stockpile in the absence of nuclear testing. Consistent with the SSMP, the Advanced Hydrotest Facility (AHF) has been conceived to provide improved radiographic imaging with multiple axes and multiple time frames. The AHF would be used to better understand the evolution of nuclear weapon primary implosion shape under normal and accident scenarios. There are three fundamental technologies currently under consideration for use on the AHF. These include linear induction acceleration, inductive-adder pulsed-power technology (both technologies using high current electron beams to produce an intense X-ray beam) and high-energy proton accelerators to produce a proton beam. The Scrounge-atron (a proton synchrotron) was conceived to be a relatively low cost demonstration of the viability of the third technology using bursts of energetic protons, magnetic lenses, and particle detectors to produce the radiographic image. In order for the Scrounge-atron to provide information useful for the AHF technology decision, the accelerator would have to be built as quickly and as economically as possible. These conditions can be met by "scrounging" parts from decommissioned accelerators across the country, especially the Main Ring at Fermilab. The Scrounge-atron is designed to meet the baseline parameters for single axis proton radiography: a 20 GeV proton beam of ten pulses, 10 degrees protons each, spaced 250 ns apart. (2 refs)
Tooth pain accompanying cluster headache in a middle-aged female: a case report
Some orofacial pains (OFP) resemble primary headache disorders, but involve the trigeminal nerve V2 or V3 dermatome. The International Classification of Orofacial Pain (ICOP) distinguishes three types of such OFPs: Type 1 (facial pain in addition to headaches), Type 2 (facial pain replacing a previous primary headache), and Type 3 (OFP similar to primary headaches, without a history of headaches). This report describes a 46-year-old female patient with a chief complaint of toothache and severe pain radiating to the left orbital region, and with accompanying autonomic signs and symptoms. The pain persisted despite dental treatments, leading to a diagnosis of cluster headache. The OFP initially matched the Type 1 description, but later changed to match the Type 2 description. This case highlights the need to differentiate nonodontogenic from odontogenic pain for accurate diagnosis and treatment
Magnetic properties and thermal stability of Co/HfN multilayer films for high-frequency application
Sputtered metal–nonmetal granular films tend to exhibit growth-induced perpendicular magnetic anisotropy. In this work, Co/HfN multilayers were synthesized to suppress the development of columnar clusters along the deposition direction. The results reveal that a HfN interlayer thickness of less than 0.4 nm is insufficient to separate the columnar clusters; however, increasing the interlayer thickness to 0.8 nm with increasing the sputtering duration successfully led to typical in-plane magnetic anisotropy with a coercivity as low as 3 Oe. The Co(4 nm)/HfN(1.5 nm) multilayers exhibited high permeability of approximately 260 up to 1.6 GHz. The resonance frequency increased from 1.8 to 2.3 GHz with increasing annealing temperature, which is attributed to the increased magnetic anisotropy. Our results suggest that the multilayers still show high-frequency performance even after annealing at 450 °C, which would be a big advantage for complementary metal–oxide–semiconductor (CMOS) fabrication technology
- …
