434 research outputs found

    Cytokinin biosynthesis ISOPENTENYLTRANSFERASE genes are differentially expressed during phyllomorph development in the acaulescent Streptocarpus rexii (Gesneriaceae)

    Get PDF
    Abstract The enzyme ISOPENTENYLTRANSFERASE (IPT) is responsible for the rate limiting step of cytokinin biosynthesis, an important plant hormone with key roles in meristem maintenance and organ development. In this study, we isolated IPT genes from the acaulescent Streptocarpus rexii, a plant that shows an unorthodox development starting with post-germination anisocotyly, in which cytokinins play an integral role. Three adenosine phosphate-IPTs and two tRNA-IPTs were isolated from S. rexii. Their expression levels and patterns in different tissues were compared by means of realtime-PCR and mRNA in-situ hybridization. We found that each SrIPT had a distinctive expression pattern. Interestingly, in vegetative tissues as well as in meristems only the adenosine phosphate-IPT SrIPT5 and the tRNA-IPT SrIPT9 were found. In addition, they were differentially affected by external hormone application, suggesting their different regulation and expression during meristem formation and maintenance and lamina growth. Our results indicate that SrIPTs are involved in shaping the architecture of S. rexii, working differentially and redundantly, and show that differentially expressed IPT genes regulate plant form

    Strong long-period fiber gratings recorded at 352 nm

    Get PDF
    We describe long-period grating inscription in hydrogenated telecom fibers by use of high-intensity femto-second 352 nm laser pulses. We show that this technique allows us to fabricate high-quality 30 dB gratings of 300 μm period and 2 cm length by use of a three-photon absorption mechanism. © 2005 Optical Society of America

    Stability of Ge-related point defects and complexes in Ge-doped SiO_2

    Full text link
    We analyze Ge-related defects in Ge-doped SiO_2 using first-principles density functional techniques. Ge is incorporated at the level of ~ 1 mol % and above. The growth conditions of Ge:SiO_2 naturally set up oxygen deficiency, with vacancy concentration increasing by a factor 10^5 over undoped SiO_2, and O vacancies binding strongly to Ge impurities. All the centers considered exhibit potentially EPR-active states, candidates for the identification of the Ge(n) centers. Substitutional Ge produces an apparent gap shrinking via its extrinsic levels.Comment: RevTeX 4 pages, 2 ps figure

    Are bisphosphonates effective in the treatment of osteoarthritis pain? A meta-analysis and systematic review.

    Get PDF
    Osteoarthritis (OA) is the most common form of arthritis worldwide. Pain and reduced function are the main symptoms in this prevalent disease. There are currently no treatments for OA that modify disease progression; therefore analgesic drugs and joint replacement for larger joints are the standard of care. In light of several recent studies reporting the use of bisphosphonates for OA treatment, our work aimed to evaluate published literature to assess the effectiveness of bisphosphonates in OA treatment

    Differential catabolism of 22-oxacalcitriol and 1,25-dihydroxyvitamin D3 by normal human peripheral monocytes

    Get PDF
    22-Oxacalcitriol [1,25-(OH)2-22oxa-D3] mimics the action of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in a variety of target tissues, including the systemic control of calcitriol metabolism. Similar to 1,25-(OH)2D3, 1,25-(OH)2-22oxa-D3 decreases the rate of 1,25-(OH)2D3 synthesis and accelerates its metabolic clearance rate. We have previously shown that in normal human monocytes, physiological concentrations of 1,25-(OH)2D3 and 1,25-(OH)2-22oxa-D3 determine identical suppression of 1,25-(OH)2D3 synthesis. Moreover, both sterols have a similar potency to induce vitamin D degradation through stimulation of the C24-hydroxylation pathway. In this study, we examined the ability of normal human monocytes to metabolize 1,25-(OH)2-22oxa-D3 and whether the enzymes involved are the same as those that catabolize 1,25-(OH)2D3. Time-course experiments demonstrated no detectable basal catabolic activity. However, exogenous 1,25-(OH)2D3 at physiological concentrations induced 1,25-(OH)2-22oxa-D3 degradation by normal human monocytes. Competition experiments showed that a 10-fold molar excess of unlabeled 1,25-(OH)2D3 inhibited tritiated-1,25-(OH)2-22oxa-D3 catabolism by 85%, whereas a 10-fold excess of unlabeled 1,25-(OH)2-22oxa-D3 reduced tritiated-1,25-(OH)2-22oxa-D3 catabolism by 33%. In contrast, although a 10-fold excess of unlabeled 1,25-(OH)2D3 reduced tritiated 1,25-(OH)2D3 catabolism by 60%, a 1000-fold excess of 1,25-(OH)2-22oxa-D3 was required to reduce tritiated 1,25-(OH)2D3 catabolism to this degree. The apparent Km for 1,25-(OH)2-22oxa-D3 was significantly higher than that of 1,25-(OH)2D3 (2.0 +/- 0.8 0.9 +/- 0.2 nM, respectively; P < 0.001) for the catabolic pathway induced by physiological concentrations of 1,25-(OH)2D3. Moreover, the presence of 0.65 nM 1,25-(OH)2D3 caused an additional increase in the Km for 1,25-(OH)2-22oxa-D3 (3.2 +/- 0.8 nM). These data suggest that 1,25-(OH)2-22oxa-D3 may be less accessible than 1,25-(OH)2D3 to the hydroxylases involved in vitamin D catabolism. The resulting prolonged biological half-life of the analog in certain target tissues may be involved in its selectivity

    Sequence of the Gonium pectorale mating locus reveals a complex and dynamic history of changes in volvocine algal mating haplotypes

    Get PDF
    Citation: Hamaji, T., Mogi, Y., Ferris, P. J., Mori, T., Miyagishima, S., Kabeya, Y., . . . Nozaki, H. (2016). Sequence of the Gonium pectorale mating locus reveals a complex and dynamic history of changes in volvocine algal mating haplotypes. G3: Genes, Genomes, Genetics, 6(5), 1179-1189. doi:10.1534/g3.115.026229Additional Authors: Nozaki, H.Sex-determining regions (SDRs) or mating-type (MT) loci in two sequenced volvocine algal species, Chlamydomonas reinhardtii and Volvox carteri, exhibit major differences in size, structure, gene content, and gametolog differentiation. Understanding the origin of these differences requires investigation of MT loci from related species. Here, we determined the sequences of the minus and plus MT haplotypes of the isogamous 16-celled volvocine alga, Gonium pectorale, which is more closely related to the multicellular V. carteri than to C. reinhardtii. Compared to C. reinhardtiiMT, G. pectoraleMT is moderately larger in size, and has a less complex structure, with only two major syntenic blocs of collinear gametologs. However, the gametolog content of G. pectoraleMT has more overlap with that of V. carteriMT than with C. reinhardtiiMT, while the allelic divergence between gametologs in G. pectorale is even lower than that in C. reinhardtii. Three key sex-related genes are conserved in G. pectorale MT: GpMID and GpMTD1 in MT-, and GpFUS1 in MT+. GpFUS1 protein exhibited specific localization at the plus-gametic mating structure, indicating a conserved function in fertilization. Our results suggest that the G. pectorale-V. carteri common ancestral MT experienced at least one major reformation after the split from C. reinhardtii, and that the V. carteri ancestral MT underwent a subsequent expansion and loss of recombination after the divergence from G. pectorale. These data begin to polarize important changes that occurred in volvocine MT loci, and highlight the potential for discontinuous and dynamic evolution in SDRs. © 2016 Hamaji et al
    corecore