50 research outputs found

    cIMPACT-NOW Update 9: Recommendations on Utilization of Genome-Wide DNA Methylation Profiling for Central Nervous System Tumor Diagnostics

    Get PDF
    Genome-wide DNA methylation signatures correlate with and distinguish central nervous system (CNS) tumor types. Since the publication of the initial CNS tumor DNA methylation classifier in 2018, this platform has been increasingly used as a diagnostic tool for CNS tumors, with multiple studies showing the value and utility of DNA methylation – based classification of CNS tumors. A Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) Working Group was therefore convened to describe the current state of the field and to provide advice based on lessons learned to date. Here, we provide recommendations for the use of DNA methylation-based classification in CNS tumor diagnostics, emphasizing attributes and limitations of the modality. We emphasize that methylation classifier is one diagnostic tool to be used alongside previously established diagnostic tools in a fully integrated fashion. In addition, we provide examples of the inclusion of DNA methylation data within the layered diagnostic reporting format endorsed by the World Health Organization (WHO) and the International Collaboration on Cancer Reporting. We emphasize the need for backwards compatibility of future platforms to enable accumulated data to be compatible with new versions of the array. Finally, we outline the specific connections between methylation classes and CNS WHO tumor types to aid in the interpretation of classifier results. It is hoped that this update will assist the neuro-oncology community in the interpretation of DNA methylation classifier results to facilitate the accurate diagnosis of CNS tumors and thereby help guide patient management

    A glossary for biometeorology

    Get PDF
    Here we present, for the first time, a glossary of biometeorological terms. The glossary aims to address the need for a reliable source of biometeorological definitions, thereby facilitating communication and mutual understanding in this rapidly expanding field. A total of 171 terms are defined, with reference to 234 citations. It is anticipated that the glossary will be revisited in coming years, updating terms and adding new terms, as appropriate. The glossary is intended to provide a useful resource to the biometeorology community, and to this end, readers are encouraged to contact the lead author to suggest additional terms for inclusion in later versions of the glossary as a result of new and emerging developments in the field

    Conforto térmico e desempenho de bezerras Girolando alojadas em abrigos individuais com diferentes coberturas

    Full text link
    Esta pesquisa foi desenvolvida com o objetivo de caracterizar os efeitos do ambiente térmico nos índices de conforto, respostas fisiológicas e no desempenho de bezerras Girolando, alojadas em abrigos individuais cobertos com diferentes materiais. O experimento foi realizado entre janeiro e março de 2012, com duração de 56 dias, conduzido com 24 bezerras de composição genética 7/8 Holandês-Gir aos 15 dias de vida e com peso médio de 40,6 kg. Os tratamentos consistiram em três tipos de cobertura, palha de palmeira, telha de polímero reciclado e telha de fibrocimento, com 8 repetições. O delineamento experimental adotado foi o inteiramente casualizado com comparação entre médias pelo teste de Tukey (p < 0,05). A entalpia e a carga térmica radiante diferiram estatisticamente em todos os tratamentos sendo os menores valores apresentados pelos abrigos com cobertura de telha reciclada, 59,3 kJ kg-1 de ar seco e 444,8 W m-2, respectivamente. Não houve diferença significativa em nenhuma das variáveis fisiológicas estudadas, porém a frequência respiratória esteve elevada em todos os tratamentos sendo mais acentuada nos animais sob cobertura de fibrocimento (57,2 mov min-1) indicando mais suscetibilidade ao estresse térmico

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Crystal structures and topology of new and rare arsenates

    Full text link
    corecore