145 research outputs found

    Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    Get PDF
    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band

    Rest-UV Absorption Lines as Metallicity Estimator: the Metal Content of Star-Forming Galaxies at z~5

    Get PDF
    We measure a relation between the depth of four prominent rest-UV absorption complexes and metallicity for local galaxies and verify it up to z~3. We then apply this relation to a sample of 224 galaxies at 3.5 = 4.8) in COSMOS, for which unique UV spectra from DEIMOS and accurate stellar masses from SPLASH are available. The average galaxy population at z~5 and log(M/Msun) > 9 is characterized by 0.3-0.4 dex (in units of 12+log(O/H)) lower metallicities than at z~2, but comparable to z~3.5. We find galaxies with weak/no Ly-alpha emission to have metallicities comparable to z~2 galaxies and therefore may represent an evolved sub-population of z~5 galaxies. We find a correlation between metallicity and dust in good agreement with local galaxies and an inverse trend between metallicity and star-formation rate (SFR) consistent with observations at z~2. The relation between stellar mass and metallicity (MZ relation) is similar to z~3.5, however, there are indications of it being slightly shallower, in particular for the young, Ly-alpha emitting galaxies. We show that, within a "bathtub" approach, a shallower MZ relation is expected in the case of a fast (exponential) build-up of stellar mass with an e-folding time of 100-200 Myr. Due to this fast evolution, the process of dust production and metal enrichment as a function of mass could be more stochastic in the first billion years of galaxy formation compared to later times.Comment: 20 pages, 13 figures, 4 tables; Submitted to Ap

    The DEIMOS 10k spectroscopic survey catalog of the COSMOS field

    Get PDF
    We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad redshift distribution in the range 0<z<6, with one peak at z~1, and another one around z~4. We have identified 13 redshift spikes at z>0.65 with chance probabilities <4xE-4$, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Ly-alpha background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4.Comment: 28 pages, 11 figures and 5 tables. The full catalogue table is available on http://cosmos.astro.caltech.edu. Accepted for publication in the Astrophysical Journa

    Unveiling a population of galaxies harboring low-mass black holes with X-rays

    Get PDF
    We report the discovery of three low-mass black hole (BH) candidates residing in the centers of low-mass galaxies at z < 0.3 in the Chandra Deep Field-South Survey. These BHs are initially identified as candidate active galactic nuclei based on their X-ray emission in deep Chandra observations. Multi-wavelength observations are used to strengthen our claim that such emission is powered by an accreting supermassive BH. While the X-ray luminosities are low at L_X ~ 10^(40) erg s^(–1) (and variable in one case), we argue that they are unlikely to be attributed to star formation based on Hα or UV fluxes. Optical spectroscopy from Keck and the VLT allows us to (1) measure accurate redshifts, (2) confirm their low stellar host mass, (3) investigate the source(s) of photo-ionization, and (4) estimate extinction. With stellar masses of M_* < 3 × 10^9 M_☉ determined from Hubble Space Telescope/Advanced Camera for Surveys imaging, the host galaxies are among the lowest mass systems known to host actively accreting BHs. We estimate BH masses M_(BH) ~ 2 × 10^5 M_☉ based on scaling relations between BH mass and host properties for more luminous systems. In one case, a broad component of the Hα emission-line profile is detected, thus providing a virial mass estimate. BHs in such low-mass galaxies are of considerable interest as the low-redshift analogs to the seeds of the most massive BHs at high redshift which have remained largely elusive to date. Our study highlights the power of deep X-ray surveys to uncover such low-mass systems

    Evidence for Supernova-Synthesised Dust from the Rising Afterglow of GRB 071025 at z~5

    Get PDF
    We present observations and analysis of the broadband afterglow of Swift GRB 071025. Using optical and infrared (RIYJHK) photometry, we derive a photometric redshift of 4.4 < z < 5.2; at this redshift our simultaneous multicolour observations begin at ~30 s after the GRB trigger in the host frame and during the initial rising phase of the afterglow. We associate the light curve peak at 580 s in the observer frame with the formation of the forward shock, giving an estimate of the initial Lorentz factor Gamma_0 ~ 200. The red spectral energy distribution (even in regions not affected by the Lyman-alpha break) provides secure evidence of a large dust column. However, the inferred extinction curve shows a prominent flat component between 2000-3000 Angstroms in the rest-frame, inconsistent with any locally observed template but well-fit by models of dust formed by supernovae. Time-dependent fits to the extinction profile reveal no evidence of dust destruction and limit the decrease in the extinction column to Delta A_3000 < 0.54 mag after t = 50 s in the rest frame. Our observations provide evidence of a transition in dust properties at z~5, in agreement with studies of high-z quasars, and suggest that SN-formed dust continues to dominate the opacity of typical galaxies at this redshift.Comment: Resubmitted to MNRAS following referee report. Contains additional figure and some extra analysis/discussio

    Mineralogy, Three Dimensional Structure, and Oxygen Isotope Ratios of Four Crystalline Particles from Comet 81P/Wild 2

    Get PDF
    Preliminary examinations of small dust particles from comet 82P/Wild 2 revealed many expected and unexpected features. Among them the most striking feature is the presence of abundant crystalline material in the comet. Synchrotron radiation X-ray diffraction and microtomography are the most efficient methods to detect and describe bulk mineralogical features of crystalline cometary particles. In the present study, in addition to these two non-destructive techniques, electron microscopy and ion-probe mass spectrometry were carried out on the four crystalline particles

    An investigation of the luminosity-metallicity relation for a large sample of low-metallicity emission-line galaxies

    Full text link
    (abridged) We present 8.2m VLT spectroscopic observations of 28 HII regions in 16 emission-line galaxies and 3.6m ESO telescope spectroscopic observations of 38 HII regions in 28 emission-line galaxies. These emission-line galaxies were selected mainly from the Data Release 6 (DR6) of the Sloan Digital Sky Survey (SDSS) as metal-deficient galaxy candidates. We collect photometric and high-quality spectroscopic data for a large uniform sample of star forming galaxies including new observations. Our aim is to study the luminosity-metallicity (L-Z) relation for nearby galaxies, especially at its low-metallicity end and compare it with that for higher-redshift galaxies. From our new observations we find that the oxygen abundance in 61 out of the 66 HII regions of our sample ranges from 12+logO/H=7.05 to 8.22. Our sample includes 27 new galaxies with 12+logO/H<7.6 which qualify as extremely metal-poor star-forming galaxies (XBCDs). Among them are 10 HII regions with 12+logO/H<7.3. The new sample is combined with a further 93 low-metallicity galaxies with accurate oxygen abundance determinations from our previous studies, yielding in total a high-quality spectroscopic data set of 154 HII regions. 9000 more galaxies with oxygen abundances, based mainly on the Te-method, are compiled from the SDSS. Our data set spans a range of 8 mag with respect to its absolute magnitude in SDSS g (-12>Mg>-20) and nearly 2 dex in its oxygen abundance (7.0<12+logO/H<8.8), allowing us to probe the L-Z relation in the nearby universe down to the lowest currently studied metallicity level. The L-Z relation established on the basis of the present sample is consistent with previous ones obtained for emission-line galaxies.Comment: 27 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    A Shock-Induced Pair of Superbubbles in the High-Redshift Powerful Radio Galaxy MRC 0406-244

    Get PDF
    We present new optical spectroscopy of the high-redshift powerful radio galaxy MRC 0406-244 at redshift of 2.429. We find that the two extensions toward NW and SE probed in the rest-frame ultraviolet image are heated mainly by the nonthermal continuum of the active galactic nucleus. However, each extension shows a shell-like morphology, suggesting that they are a pair of superbubbles induced by the superwind activity rather than by the interaction between the radio jet and the ambient gas clouds. If this is the case, the intense starburst responsible for the formation of superbubbles could occur 1×109\sim 1 \times 10^9 yr ago. On the other hand, the age of the radio jets may be of the order of 106\sim 10^6 yr, being much shorter than the starburst age. Therefore, the two events, i.e., the starburst and the radio-jet activities, are independent phenomena. However, their directions of the expanding motions could be governed by the rotational motion of the gaseous component in the host galaxy. This idea appears to explain the alignment effect of MRC 0406-244.Comment: 4 pages (emulateapj.sty), Fig. 1 (jpeg) + Fig.2 (eps). Accepted for publications in ApJ (Letters
    corecore