9 research outputs found

    Typing Late Prehistoric Cows and Bulls—Osteology and Genetics of Cattle at the Eketorp Ringfort on the Öland Island in Sweden

    Get PDF
    Human management of livestock and the presence of different breeds have been discussed in archaeozoology and animal breeding. Traditionally osteometrics has been the main tool in addressing these questions. We combine osteometrics with molecular sex identifications of 104 of 340 morphometrically analysed bones in order to investigate the use of cattle at the Eketorp ringfort on the Öland island in Sweden. The fort is dated to 300–1220/50 A.D., revealing three different building phases. In order to investigate specific patterns and shifts through time in the use of cattle the genetic data is evaluated in relation to osteometric patterns and occurrence of pathologies on cattle metapodia. Males were genotyped for a Y-chromosomal SNP in UTY19 that separates the two major haplogroups, Y1 and Y2, in taurine cattle. A subset of the samples were also genotyped for one SNP involved in coat coloration (MC1R), one SNP putatively involved in resistance to cattle plague (TLR4), and one SNP in intron 5 of the IGF-1 gene that has been associated to size and reproduction

    Population genomics of post-glacial western Eurasia

    Get PDF
    : Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Population genomics of post-glacial western Eurasia

    No full text
    Western Eurasia witnessed several large-scale human migrations during the Holocene1,2,3,4,5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.info:eu-repo/semantics/publishedVersio
    corecore