2,412 research outputs found

    Scatterometer Data Analysis program Final report, 1 Jun. 1968 - 31 May 1969

    Get PDF
    Evaluation and processing of scatterometer data for use in NASA Earth Resources Progra

    Vesicularity, bubble formation and noble gas fractionation during MORB degassing

    Full text link
    The objective of this study is to use molecular dynamics simulation (MD) to evaluate the vesicularity and noble gas fractionation, and to shed light on bubble formation during MORB degassing. A previous simulation study (Guillot and Sator (2011) GCA 75, 1829-1857) has shown that the solubility of CO2 in basaltic melts increases steadily with the pressure and deviates significantly from Henry's law at high pressures (e.g. 9.5 wt% CO2 at 50 kbar as compared with 2.5 wt% from Henry's law). From the CO2 solubility curve and the equations of state of the two coexisting phases (silicate melt and supercritical CO2), deduced from the MD simulation, we have evaluated the evolution of the vesicularity of a MORB melt at depth as function of its initial CO2 contents. An excellent agreement is obtained between calculations and data on MORB samples collected at oceanic ridges. Moreover, by implementing the test particle method (Guillot and Sator (2012) GCA 80, 51-69), the solubility of noble gases in the two coexisting phases (supercritical CO2 and CO2-saturated melt), the partitioning and the fractionation of noble gases between melt and vesicles have been evaluated as function of the pressure. We show that the melt/CO2 partition coefficients of noble gases increase significantly with the pressure whereas the large distribution of the 4He/40Ar* ratio reported in the literature is explained if the magma experiences a suite of vesiculation and vesicle loss during ascent. By applying a pressure drop to a volatile bearing melt, the MD simulation reveals the main steps of bubble formation and noble gas transfer at the nanometric scale. A key result is that the transfer of noble gases is found to be driven by CO2 bubble nucleation, a finding which suggests that the diffusivity difference between He and Ar in the degassing melt has virtually no effect on the 4He/40Ar* ratio measured in the vesicles.Comment: 42 pages, 8 figures. To be published in Chemical Geolog

    A Time-Dependent Model of HD209458b

    Full text link
    We developed a time-dependent radiative model for the atmosphere of HD209458b to investigate its thermal structure and chemical composition. Time-dependent temperature profiles were calculated, using a uniform zonal wind modelled as a solid body rotation. We predict day/night temperature variations of 600K around 0.1 bar, for a 1 km/s wind velocity, in good agreement with the predictions by Showman & Guillot (2002). On the night side, the low temperature allows the sodium to condense. Depletion of sodium in the morning limb may explain the lower than expected abundance found by Charbonneau et al (2002).Comment: 2 pages, LaTeX with 1 EPS figure embedded, using newpasp.sty (supplied). To appear in the proceedings of the XIXth IAP colloquium "Extrasolar Planets: Today and Tomorrow" held in Paris, France, 2003 June 30 -- July 4, ASP Conf. Se

    Viscosity and viscosity anomalies of model silicates and magmas: a numerical investigation

    Full text link
    We present results for transport properties (diffusion and viscosity) using computer simulations. Focus is made on a densified binary sodium disilicate 2SiO2_2-Na2_2O (NS2) liquid and on multicomponent magmatic liquids (MORB, basalt). In the NS2 liquid, results show that a certain number of anomalies appear when the system is densified: the usual diffusivity maxima/minima is found for the network-forming ions (Si,O) whereas the sodium atom displays three distinct r\'egimes for diffusion. Some of these features can be correlated with the obtained viscosity anomaly under pressure, the latter being be fairly well reproduced from the simulated diffusion constant. In model magmas (MORB liquid), we find a plateau followed by a continuous increase of the viscosity with pressure. Finally, having computed both diffusion and viscosity independently, we can discuss the validity of the Eyring equation for viscosity which relates diffusion and viscosity. It is shown that it can be considered as valid in melts with a high viscosity. On the overall, these results highlight the difficulty of establishing a firm relationship between dynamics, structure and thermodynamics in complex liquids.Comment: 13 pages, 8 figure

    The Interiors of Giant Planets: Models and Outstanding Questions

    Full text link
    We know that giant planets played a crucial role in the making of our Solar System. The discovery of giant planets orbiting other stars is a formidable opportunity to learn more about these objects, what is their composition, how various processes influence their structure and evolution, and most importantly how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail, mostly from close spacecraft flybys. We can infer that they are all enriched in heavy elements compared to the Sun, with the relative global enrichments increasing with distance to the Sun. We can also infer that they possess dense cores of varied masses. The intercomparison of presently caracterised extrasolar giant planets show that they are also mainly made of hydrogen and helium, but that they either have significantly different amounts of heavy elements, or have had different orbital evolutions, or both. Hence, many questions remain and are to be answered for significant progresses on the origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth and Planetary Sciences, vol 33, (2005

    Toward a homogeneous set of transiting planet parameters

    Full text link
    With 40 or more transiting exoplanets now known, the time is ripe to seek patterns and correlations among their observed properties, which may give important insights into planet formation, structure, and evolution. This task is made difficult by the widely different methodologies that have been applied to measure their properties in individual cases. Furthermore, in many systems our knowledge of the planet properties is limited by the knowledge of the properties of the parent stars. To address these difficulties we have undertaken the first comprehensive analysis of the data for 23 transiting planets using a uniform methodology. We revisit several of the recently proposed correlations, and find new ones involving the metallicity of the parent stars.Comment: 4 pages including figures. To appear in Proceedings of IAU Symposium 253, "Transiting Planets", May 2008, Cambridge, M

    Evolution of Exoplanets and their Parent Stars

    Get PDF
    Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-type stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets and brown dwarfs in close orbit around G-dwarfs and their presence around F-dwarfs are probably tied to the different properties of dissipation in the stellar interiors. Both the evolution and the composition of stars and planets are intimately linked.Comment: appears in The age of stars - 23rd Evry Schatzman School on Stellar Astrophysics, Roscoff : France (2013

    A Time-Dependent Radiative Model of HD209458b

    Get PDF
    We present a time-dependent radiative model of the atmosphere of HD209458b and investigate its thermal structure and chemical composition. In a first step, the stellar heating profile and radiative timescales were calculated under planet-averaged insolation conditions. We find that 99.99% of the incoming stellar flux has been absorbed before reaching the 7 bar level. Stellar photons cannot therefore penetrate deeply enough to explain the large radius of the planet. We derive a radiative time constant which increases with depth and reaches about 8 hr at 0.1 bar and 2.3 days at 1 bar. Time-dependent temperature profiles were also calculated, in the limit of a zonal wind that is independent on height (i.e. solid-body rotation) and constant absorption coefficients. We predict day-night variations of the effective temperature of \~600 K, for an equatorial rotation rate of 1 km/s, in good agreement with the predictions by Showman &Guillot (2002). This rotation rate yields day-to-night temperature variations in excess of 600 K above the 0.1-bar level. These variations rapidly decrease with depth below the 1-bar level and become negligible below the ~5--bar level for rotation rates of at least 0.5 km/s. At high altitudes (mbar pressures or less), the night temperatures are low enough to allow sodium to condense into Na2S. Synthetic transit spectra of the visible Na doublet show a much weaker sodium absorption on the morning limb than on the evening limb. The calculated dimming of the sodium feature during planetary transites agrees with the value reported by Charbonneau et al. (2002).Comment: 9 pages, 8 figures, replaced with the revised versio
    corecore