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0	 secrtoN I
INTRODUCTION

The objective of the NASA Earth Resources Survey Program (ERSP) is to

determine what contributions can be made by remote sensors to various

disciplines: agriculture, forestry,' geology, oceanography, weather

prediction, url*an programs, and others. To further these objectives the

ERSP has initially adapted remote sensing technology and instrumentation,

some originally developed for space application to earth resources

surveying. To achieve these objectives advanced sensors and technology

are being developed which will uniquely define specific earth resources

from airborne and spaceborne platforms. Remote sensing surveys made from

such platforms will permit synoptic measurements for directly mapping

earth resources and for viewing atmospheric phenomena on a global basis.

1.1 PROGRAM OBJECTIVES

The data analysis contract (NAS9-8252) performed by Ryan Aeronautical

Company is an integral part of the ERSP. The objectives of this contractual

effort apply :specifically to scatterometer systems. They are:

• To determine Scatterometer signatures v

• To develop a library of curves of RF backscattering coefficients. 3

• To determine criteria for identifying surface parameters. 3

• To determine an economical method for reducing sea state data. 3

• To determine optimum data reduction methods and the most useful,

formats for data presentation.

• To correlate data between the 400 MHz and 13.3 GHz scatterometers. v'

• To determine the effects of polarization at 400 MHz.

1-1	 ft
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9	 e To determine the feasibility of terrain identification using radar 3

signatures.

e To develop methods of determining the direction of polarization

rotation.

e To determine autocorrelation functions for the 400 MHz and 13.3 GHz

scatterometers.

e To analyze various surface features and types as a function of the

RF backscattering coefficient.

This report summarizes the achievemensts ,made by Ryan on this program in

fulfilling the above mentioned objectives. During this period, approximately

46 lines of scatterometer data have been processed and verified. A listing

of these is provided in Section 2 of this report.

During the contract period, NASA procured two additional scatterometer.

systems from Ryan for their Earth Resources Survey Program. They were

1.6 GHz and 13.3 GHz dual polarized scatterometers. The 1.6 GHz scattero-

meter was flown on the North Atlantic Mission in March 1969. As part of

this contract, Ryan has supported NASA in the val-idation of the Uata taken

prior to functional check flight (FCF), and during this mission. The 13.3 GHz

dual scatterometer has not yet flown.

1.2 BACKGROUND

Ryan initially designed, built, and tested a radar reflectivity system in

1962. A single polarized (REDOP) scatterometer which evolved from this

prototype system was sold to NASA/MSC and installed on the CV240 in 1965.

This system was built for the primary.-purpose of obtaining reflectivity

data for evaluating the capability of doppler velocity sensors, radar

altimeters, and surveillance radars. The high priority of the Apollo

Program with its planned radar-directed lunar descent caused a focusing of

attention on the REDOP scatterometer, as a device for obtaining backscattering

data from lunar-like terrain. This data could be used specifically for

F1 !	 1-2



evaluating he capability of the lunar-landingg	 p	 y 	 radar. Though considerable

data was taken with the REDOP scatterometer over various terrains, the

majority of the data during 1966 and 1967 was taken over terrain which was

considered analogous to the lunar surface. This program since 1967 has

increased in scope and prominence to include a family of remote sensors

for the purpose of surveying the surface of the earth and to the ultimate

benefit of mankind by contributing valuable information for better

management of our earth resources. 'As the scope of this program expanded

so did the value of the REDOP scatterometer to the point that today four

scatterometer systems are included within the family of remote sensors:

1) The original single polarized 13.3 GHz scatterometer; 2) a dual

polarized 13.3 GHz scatterome~er; 3) a dual polarized 1.6 GHz scatterometer,

and 4) a 400 MHz scatterometer system.

As the number of scatterometers increased so did the data reduction load.

The original data reduction programs were inadequate to meet the demands

of this increase and are subsequently being revised.

For the past year the emphasis of Ryan Engineers has been focused primarily

in three areas: 1) to develop methods of display of scatterometer data for

making this data of more value to principal investigator and to the

scientific community in general; 2) Lo validate in general, the output of

the data processing programs and to check the validity of the algorithms as

programmed in the digital computer programs; 3) to decrease the turn-around

time of data processing by optimizing the formation of the programs. These

primary efforts are discussed in this final report.

1.3 RECONMENDATIONS

During this past year much has been learned by NASA and Ryan engineers con-

cerning scatterometer data processing. With the increase in the number of

scatterometers being flown, and the amount of data that will be handled

this coming year, several potential problem areas have become apparent. In

order t ,- locate, define, and solve these problems, so that scatterometer

data will flow smoothly and efficiently, the following recommendations are

submitted:

r'!:d
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Error Analysis - A complete error analysis of each scattero-

meter should be made, accounting for all the electronics and

perturbative effects due to specific environmental conditions.

• Scatteromete Calibration Procedures - A set of calibration

procedures for each scatterometer should be defined and docu-

mented. The procedures should include pre-mission check out

of equipment, functional check flight definition, and ground

calibration requirements.

• Automatic Editing - The automatic editing procedures should

be updated to include data from all scatterometer systems.

with the increase in data due to the addition of the 1.6 GHz

and 13.3 GHz dual polarized systems, automatic editing is

almost imperative.

• Data Display - Effort should be continued to & —elop new and

better data display techniques. Methods should be studied

of how the data from each scatterometer can be displayed in

such a way that would enhance its usefulness to NASA and the

scientific community.

In addition to the above listed areas, it can be anticipated that problems

normally associated with the development of new remote sensing instrumen-

tation will periodically occur. Problems such as modifying computer

programs will always be part of the data reduction program. It is felt

tbRl , with the past years of experience in the; Earth Resources Survey

Program, both Ryan and NASA can, as they have in the past, solve these

problems as they occur.

It	 i



.	 SECTION 2

DATA REDUCED AND EVALUATED

This section lists all the lines and runs which have been reduced, evaluated,

and released through NASA/MSC to Earth Resources Principal Investigators

(Table 2-1). Also included are descTiptions of each mission and some examples

of the data.

2.1 MISSION 61, SITE 76, FLIGHT 3, RUN 1, LINES 1-5 AND FLIGHT 4, RUN 1,

LINES 1 AND 2.

Mission 61 was flown in November of 1967. The data collected over Garden

City, Kansas (Site 76) was in support of studies being conducted at the

Unviersity of Kansas (D.S. Simonett Principal Investigator). Of primary

interest was an attempt to use tie 13.3 GHz Scatterometer to qualitatively

describe terrain conditions, both vegetation and soil.

It was requested that "raw" filetred information from these lines be

displayed in a time history format of relative voltage versus time. When

this was completed the data were checked for variation in level with change

ii, incidence angle and for stability of calibrate level. The time histories

were released with two short time segments noted where the data could not be

validated due to apparent noise spikes.

TABLE 2-1 LIST OF EVALUATED LINES $ RUNS

Mission Site Flight Line Run

61 76 3 1 1

61 76 3 2 1

61 76 3 3 1



TABLE 2 - 1 (Continued)

Mission	 Site	 Flight	 Line	 Run

61 76 3 5 1

61 76 4 1 1

61 76 4 2 1

70 166 2 1 1

70 166 2 2 1

70 166 2 3 1

70 166 2 4 1

70 166 3 10 1

70 166 3 11 1

70 166 3 12 1

70 166 3 13 1

70 166 3 21 1

70 166 4 22 1

70 166 4 23 1

70 166 4 24 1

.. 72 167 3 1 2A

72 167 3 1 2B

72 167 3 2 1

` ^yy 73 130 1 8 1

9 1

10 1

": 11 1

< 12 1s *Y .

15 1
4 ^.

74 85 2 3 1

74 44 4 22 1

26 1

27 1

74 76 1 1 lA

74 76 1 1 1B

74 76 1 3 1

75 32 3 10 1 

2-2
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TABLE 2-1 (Continued)

Mission Site Flight Line Run

75 32 3 11 1
7S 32 3 12 1
76 56 4 1 1

1 2

1 3

1 4

1 5

1 6

2 1

2 2

2 3

2 4

2 S

2 6

2 7
76 S6 S 1 1
76 56 S 1 2
76 S6 S 1 3
76 S6 S 1 4
76 56 S 1 S
76 S6 S 2 1
76 S6 S 2 2
76 S6 S 2 3
76 S6 S 2 4

76 S6 S 2 S
76 S6 S 2 6
77 44 2 31 1
80 76 7 3 1
81 132 9 1 1

t
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2.2 MISSION 70, FLIGHTS 2, 3, AND 4

Mission 70 was flown as part of the Earth Resources Aircraft Program under

the direction of NASA/MSC Science and Applications Directorate. The primary

objective of the mission was to obtain overwater remote sensor information

under sea state conditions in excess of 15 feet. The mission was based at

Keflavik, Iceland, and the data was gathered over the North Atlantic, during

April 1968. Information collected on this mission was in support of studies

being carried on at the Universities of New York and Kansas. A summary of

flights 2, 3, and 4 follows.

Figure 2-1 shows representative curves from four lines of flight 2. This

data was gathered over 26-foot waves. One channel of the scatterometer was

inoperative during this flight so that data was obtained on jest one

magnetic tape channel. As a result, the information could not be sign

sensed or computer processed. The curves presented here were hand calculated

from composite power spectral density plots. Their tendency to flatten out

with a limited dynamic range is a characteristic of data from a rough surface.

A weather ship in the %icinity of flight 3 reported 19 foot waves. Since

both channels were operative on this flight the representative curves in

Figure 2-2 have been computer processed. The increase in dynamic range

caused by a higher return from angles near the vertical and a lower return

from the larger incidence angles shows the characteristics of somewhat

smoother sea conditions.

It should be noted, that the level of the a  curves, particularly at the

higher incidence angles, is known to be velocity dependent. Without accurate

guidance and navigation data to update the reduction process, certain

variations in the higher incidence angles can be expected.

An example of such a variation was noted during data verification of line 10,

run 1 (Figure 2-2). Prior to transcription of the tape recorder voice track

where more than one velocity reading could be identified, the curve had been

2-4
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processed using a single velocity reading from the flight logs. The

difference in a  at 450 incidence angle was 9 db with lesser differences

noted at the lower angles.

Until an accurate update for guidance and navigation parameters is available

such level variations will occur particularly on missions flown with the

NASA P-3A aircraft.

Flight 4 continues the trend that the computer processed curves in Figure 2-3

show. The sea state during this flight was placed at sea state 5 with nine

foot waves. The curve shapes express this change in sea state by increasing

in dynamic range.

Figure 2-4 shows how crosswind curves from the three flights compare. Figure

2-5 is a comparison of their upwind-downwind curves. Noting the lack of

accurate guidance and navigation parameters mentioned earlier, the curve in

Figure 2-5 representing flight 3, 19-foot data does not include line 10,

run 1 upwind information. This data, due primarily to poor velocity inputs,

tended to pull the upwind-downwind average-curve up in a region where it

could not be justified. Therefore, the 19-foot wave curve presented in

Figure 2-5 is only representative of line 11, run 1 downwind information.

The two sets of curves in Figures 2-4 and 2-5 then show the 13.3 GHz

scatterometer's ability to detect variations in sea surface conditions.

Also of interest are the comparisons which can be made between the lines

within each flight. Figure 2-6 shows the crosswind data for the 26 foot

waves below the upwind-downwind data. These data correlate well with past

information (Mission 60 Argentia) and with scattering theory. For the lower

sea state conditions this difference is not as apparent, agreeing again with

past data such as Mission 20 where wave heights were 7 feet.

9-^ w
J's r
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2.3 MISSION 72, SIGiT 167, FLIGiT 3, LINE 1, RUN 2A; LINE 1, RUN 2B AND

LINE 2, RUN 1.

Mission 76, Site 167 was flown over the shallow region of Lake Michigan, during

May 1968. The primary purpose was to determine the effect that bottom-type

plankton population, turbidity, wave refraction, and temperature have upon

the accurate measuring of water depth by using multisensor data from shallow

water of known depth.

Upon receipt of this computer processed data a mission report was requested.

From the report it was determined that the data was gathered at 12,000 feet

over the edge of Lake Michigan. The data, however, did not correlate with

other over water missions. Figure 2-7 shows a comparison of previous over-

water data with a mission 72 curve. Although the previous data is from a

higher sea condition the shape serves to illustrate the problem with the

Mission 72 curves. Further investigation showed that while the mission

report stated the data was gathered with overland gain settings the actual

mission logs showed it had been gathered with overwater settings.

This discrepancy was carried through to the computer where the data was

processed with overland roll off instead of the correct overwater roll off.

This explained the dynamic range problem so that the data was reprocessed

with the overwater roll-off and made available for further analysis in mid-

Semptember.

The extreme altitude of this mission affected the data beyond 40° incidence

angle. The quickly-falling signal over smooth water at this altitude caused

400 Hz harmonic interference to bias the data.

2.4 MISSION 73, FLIGiT 1, SITE 130, LINES 8, 9, 10, 11, 12, AND 1S.

Mission 73 was flown during the weeks of May 20 and May 27, 1968 over six

California test sites. Site 130, South California, was chosen because it

2-9
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included variations in soil moisture conditions ranging from dry desert

soil to completely saturated, recently irrigated fields. The flights were

made to satisfy objectives within the disciplines of geology, geography,

forestry, and hydrology. The results of the study were primarily for use

in applying sensor/ground truth techniques to determine rural and urban land

use, soil moiiture, and surface heat balance.

This data was initially analog processed and released on a preliminary basis

shortly after completion of the mission. The results of this quick look

effort were specially helpful in determining that the primary goals of the

mission had been accomplished.

After digitizing and computer processing were completed it was determined

that the Final processed data aad been incc-rrectly time shifted. It was not
possible -:o determine if the error had occurred during recent program

modifications or it, in fact, the program was correct and the error was the

result of recent system modifications which had not been interfaced with the

data reduction group.

While the data was being recalled an adjustment was made in the program to

correct the situation. The memo recalling the data suggested that investiga-

tors could apply hand calculations which would yield meaningful results from

the information they had in hand. It was further suggested that the principal

investigators select the lines of greatest interest to be reprocessed with

the correction. Since this memo was written only line 8, run 1 from

Mission 73, has been reprocessed. The results, received in raw filtered

form were carefully checked and released for immediate distribution.

2.5 MISSION 74, FLIGHTS 1, 2,, AND 4

Mission 74 was flown over f,.ur sites:

Site 76	 Garden City, Kansas

Site 85	 Lawrence, Kansas

Site 44	 Purdue, Indiana

Site 168	 Patuxent River, Maryland

.t
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The data collected was used to support agricultural and geographic land

studies being carried on at the University of Kansas.

2.5.1 Flight 1, Site 76

A large part of the data gathered over site 75 during this mission was

found to have exceeded the voltage limits of the aircraft tape recording

unit. This was due to the occurrence of rain storms just prior to the

over flights. Excessive saturation of the terrain and some surface water

caused the return to exceed the calibration settings on the aircraft tape

recorder. Had advance notice of this condition been received, the equipment

could have been placed in the water roll-off mode and the data salvaged.

Studies are still being made in an attempt to reclaim those sections where

the data was not at the saturation .level .

2.5.2 Flights 2 and 4

Data from flights 2 and 4 of Mission 74 were released with only minor

qualifications. It was felt that this information was unbiased and could

be used for further studies.

z.6 MISSION 75, FLIGHT 3, RUN 1 OF LINES 10, 11, 12.

The lines from which data has been reduced were flown over Weslaco, Texas.

Data had been reduced from a previous mission over this area and the plots

were compared. A satisfactory correlation was achieved and the data through

50° incidence angle were released to the Earth Resources Data Group.

2.7 MISSION 76 (25 LINES)

Test site 56, Mt. Lassen, was the area overflown during flights 4 and 5 of

Mission 76. The area has a rough lavic and cinder topography and was flown

to support geological studies being performed at the University of Nevada.

i

2-12



All lines requested (25 runs covering all of flights 4 and 5) included a

short segment of data over Butte Lake (8-10 seconds). Since the system was

in the overland mode those portions of each line over the lake saturated the

on-board tape recorder. The data was computer processed before these areas

could be isolated or table of times (see Table I) formulated specifying the

areas to be disregarded in further analyses.

More detailed analyses detected large sections of each line which did not

compare in shape, level, or dynamic range with past data over similar terrain.

Figure 2-8 shows a comparison of the average and standard deviation curves

from one Mission 76 line and one Mission 39 line over similar rough terrain.

Experience with past data had shown that better correlations could be

expected between similar terrain types. Of particular interest in this

figure is the curve shape of the*Mission 76 data and the deviations from

the average curve. Also, the d:jp in signal return at the higher angles

is not characteristic of return from rough terrain and suggests a velocity

variation not cc;.npensated for in data reduction. This compensation is

difficult to make since accurate updates of aircraft parameters are not

consistently available.

It should also be noted that due

computer program during the time

factor was included in the progr

This factor can affect the level

not its shape or dynamic range.

contain this factor.

to certain changes being implemented in the

this mission was being processed a 3 db

am which could only be partially justified.

of the data in the downward direction but

All lines except line 1, run 4 of Flight 4

These points, (1) lack of correlation.. (2) areas of tape recorder saturation,

(3) excessive gain (x100) in the equipment for an overland mission at the

relatively low altitude of 2200 feet and (4) the included computer factor

lead to the release of this data with a qualifying memorandum. In the

memorandum -c was suggested that the data be studied closely and those
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Frequency: 13.3GHz Beam: FORE
Mission No.: 76 Mount Lassen Data Gathered: 7/18/68
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lines of most significant interest be requested by the investigators to

be reprocessed. Since the memorandum was transmitted most of the areas of

concern have been clarified and the following lines have been reprocessed

and released:

Flight 4
	

Flight 5

Line 1, Run 5
	

Line 2, Run 1

Line 1, Run 6
	

Line 2, Run 6

The only qualification placed on this data was that portion over the lake

which saturated the aircraft recording system. See Table 2-2

2.8 MISSION 77, SITE 44, FLIGHT 2, LINE 31, RUN 1

Mission 77 was flown over site 44on July 30, 1968. The flight was made

in the Purdue University area near West Lafayette, Indiana. The objective

was to gather 13.3 GHz scatterometer data for correlation with other sensor

data gathered over the same area on Mission 74.

The flight log stated that a high gain setting of x100 was set n the system

for the altitude 2000 feet at which this data was gathered. The millivolt

levels of the recorded data are correspondingly high. The data, however,

was collected with little or no saturation of the onboard tape recorder.

Processing proceeded smoothly with digital time histories being checked

prior to final computer reduction. The data in the form of a 0 versus 9

curves has been received and studied with satisfactory results. It should

be noted that an error in the digital filtering portion of th„ computer

program caused the data between 14:50:27 and 14:50:41 on the aft and between

14:50:41 and 14:50:42.5 on the fore to be erroneously plotted. The

reflectivity plots between these times should not be used in further

analysis of this data.
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TABLE 2-2*

Areas of tape recorder saturation due to collection of overwater data with

overland gain settings.

Mission 76, Site 56, Flight 4

Line 1, Run 1 18:27:19 -	 18:27:27

Line 1, Run 2 18:32:53 -	 18:33:00

Line 1, Run 3 18:38:58 -	 18:39:06

Line 1, Run 4 18:45:54	 - 18:46:04

Line 1, Run S 18:52:35 -	 18:52:44

Line 1, Run 6 18:59:03 -	 18:59:13

Line 2, Run 1 19:06:30	 - 19:06:40

Line 2, tun 2 19:13:28 -	 19:13:36

Line 2, Run 3 19:20:29 -	 19:20:35

Line 2, Run 4 19:27:35 -	 19:27:42

Line 2, Run 5 19:33:41 -	 19:33:47

Line 2, Run 6 19:40:18 -	 19:40:24

Line 2, Run 7 19:47:13 -	 19:47:19

Mission 76, Site 56, Flight 5

Line 1, Run 1 09:41:28 - 09:41:38

Line 1, Run 2 09:48:05 - 09:48:13

Line 1, Run 3 09:55:34 - 09:55:33

Line 1, Run 4 10:03:07 -	 10:03:16

Line 1, Run 5 10:10:50 -	 10:11:00

Line 2, Run 1 10:25:37 -	 10:25:38

` Line 2, Run 2 10 :33:48 -	 10:34:00

Line 2, Run 3 10:42:52 -	 10:43:01

Line 2, Run 4 10:52:13 -	 10:52:23

Line 2, Run 5 11:01:30 -	 11:01:43

. Line 2, Run 6 11:09:07 -	 11:09:17

*The times for flight 4 were obtained by monitoring a dub of the original
flight tape on an oscilloscope and rms meter.	 Flight 5 was not examined in
the same way so that the times were determined from examination of the
data curves.
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From the available information it was possible to determine that a limited

amount of saturation of the onboard tape recording unit had occurred. The

data, however, indicated that the amount of biased information was not

significant. One error in the digital filtering routine caused erroneous

data to be plotted between 14:50:27 and 14:50:41 aft and between 14:50:41

and 14:50:42.5 fore. With these exceptions the data was released for

distribution to the scientific community.

2.9 MISSION 80

The scatterometer data reduced from Mission 80 consisted of one line flown

over site 76 (Garden City, Kansas). The information from flight 7, line 3,

run 1, was received in four formats:

• Raw filtered voltages versus time

a0 versus 6 plots

• a
0 

versus time plots

• a versus 6 tabulations0

It is known that this data was reduced while the computer program was still

being checked out after initiation of modifications. These modifications

left the absolute level of the data in doubt. A discrepancy of 3 db was

noted between this data and data run prior to the program changes. The

information did, however, show good character and would be of further value

to the principal investigators so long as no conclusions were reached based

",n the position of the curve along the "y" axis.

Two other areas between 15:32:00 and 15:32:11 fore beam and 15:31:47 and

15:31:5b aft beam need to be disregarded during analysis since the data

points are not properly plotted. The a 0 versus 6 time plots show a single

output value during these intervals. The conclusion is that the computer

program did not properly consider the values within the time intervals noted.

Further study into this situation was initiated.
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2.10 MISSION 81, SITE 132, FLI CiT 9, LINE 1, RUN 1
Mission 81 was flown as part of the NASA Earth Resources Aircraft Program

in support of four major scientific disciplines (hydrology, oceanography,

geography, geology). The data from site 132, designated New Orleans, was

requested by Northwestern University in support of studies being performed

for the U.S. Geological Survey. The paramount objective of this particular

study was to provide information on transportation and residential land use

within the city.

The data requested from Mission 81 consisted of two minutes of data from

flight 9, line 1, run 1, site 132. The scatterometer log labels this

data line 1, run 3 in the mission report. It is felt, however, that line 1,

run 1 is the correct designation and that data was actually collected from

20:20:37 to 20:24:30.

The data angles, noise floor and calibration level indicate proper system

operation and valid data reduction procedures. Figure 2-9 shows areas

of invariance where the signal is not changing. The following table lists

the start and stop time of these irregular areas.

Start	 Stop

20:22:20.7 20:22:21.7

20:22:24.3 20:22:26

20:22:28.2 20:22:29.3

20:22:35.3 20:22:37.3

20:22:43 20:22:45

These times are for the fore beam data only and serve as example as to the

amount of data affected by this processing anDmalie. The error will not be

contained in any further data runs.

t
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2.11 MISSION 88, SITE 184

Mission 88 was a combined agency effort with instrumented aircraft from the

Manned Spacecraft Center, Goddard Space Flight Center and Naval Oceanographic

Office in participation. The North Atlantic Ocean off the coast of South-

western Ireland was the area of interest to be overflown. Studies were being

conducted in support of the Oceanographic departments of New York University

(Dr. Willard Pierson), and University of Kansas (Dr. Richard Moore). The

primary and secondary objectives as stated in the mission plan are as

follows:

• Primary Objectives:

a. To obtain 0.4 GHz, 1.6 GHz, and 13.3 GHz radar scatterometer

data over sea states in excess of 20 feet, concurrent with

the Naval Oceanographic Office (N00) airborne radar wave

profi les .

b. To obtain multifrequency radar scatterometer data over sea

states below 20 feet at approximately 4-foot intervals con-

current with the N00 wave profiles.

c. To obtain multifrequency radar scatterometer data over similar

sea states with differing wind velocities, and over dissimilar

sea states with the same wind velocity.

• Secondary Objectives:

a. To obtain sea temperature data and determine the atmospheric

effects on the data.

b. Operational checkout of DPD-2 (side-looking radar), RS-14

(dual channel imager), and KA62 systems (multi -band camera).

k ^'
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No data has been released from Mission 88 as of this writing. However,

several lines and runs are presently in various stages of processing.

Table 2-3 gives the status of each of these lines. Based on quick-look

analog verification it is felt that the quality of the data is good and

should be useful to further oceanographic studies.

Mission 88 remains the most recent scatterometer mission from which data

has been requested. At present, the scatterometer systems are in various

stages of recalibration and checkout. For this reason, it is felt that

u­ on completion of the Mission 88 data request, an effort will be made to

go back to past mission and process lines of secondary interest in an

attempt to compile a more complete library of a  versus a curves over all

types of terrain.

f
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È
C^

Oa

M
M̂ Of

M
M.^ Of

M
M'+ Of

M
M̂+ Of

M
M.r

p
OR

M
M.ti Of

M
M+ OR

M
M̂

N

N M N M M N M M M

•.+
pp
lR In

.r
N

.^
M

N
M

N
N

M
M

M
M

f
N

f
M

O
N

p
N

.^
N

^+
N

N
!V

N
N

NO NC f f f f f f

FN M Cap
.r

M Cpp P
.̂ i

CD
.fir

O
.Oi

ti
.Oi

N f
N

M
N

.pO
N

1,
N

w
N

OI
N

CA

I

1
L1^

O

co

N

Q^
E

H
a^N
idu
cn

O

V

a

Cd

Cd
D

O•rl
N
t/1

..-I

M
PJ

N

Q

zm
N

u

N

0

v

u

U

i



SECTION 3

PROGRAM CAPABILITIES

This section discusses the computer programs that are used in the reduction

of scatterometer data from the 400 MHz, 1.6 and 13.3 GHz scatterometer

systems. The format of the data output is similar for all systems.

Therefore, only the current 13.3 GHz program capabilities are presented

in detail. Those changes in the program which become necessary with the

acquisition of the 1.6 GHz and 400 MHz system are also discussed.

3.1 OUTPUT FLEXIBILITY'OF BASIC 13.3 GHz PROGRAM

The following listed data outputs are available to the principal investi-

gators if requested.

• Time history plots of the filtered raw data.

• Time history tabulation of the filtered raw data.

• Time history plots of 
a
  for each of the nine angles.

• Time history tabulations of 
a
  for each of the nine angles.

• a  versus 8 plots (fore and aft plotted separately).

• Up to 120 photograph number annotations. These numbers

will correspond to their associated times.

Other options available to the Principal investigators are as follows:

• Selection of up to 20 start-stop times within a given run.

• Selection of up to 20 start-stop times within a given run

on the statistical reports.

• A time bias adjustment, should the photograph time differ from

the IRIG time.
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• Selection of up to 10 data bandwidths and the center

frequencies for the fore beam and up to 10 for the aft

beam data.

• The investigators may also select any time interval needed

for definition, or may average several cells.

3.2 DISCUSSION OF 1.6 GHz AND 400 MHz PROGRAM REQUIREMENTS

The above capabilities and options are for the 13.3 GHz vertically polarized

scatterometer system The recent acquisition of the 1.6 GHz dual-polarized

system requires additi= l features presently not available. The 1.6 Gliz

data can be computer-processed using ,he 13.3 GHz program with only slight

modifications required to remove the sign-sensing portions from the filter.

The digitizing rate will also he reduced from the 50K rate to a rate more

in line with the 1.6 CHz data. Hence, simultaneous processing of all

polarizations is feasible.

A 400 MHz computer program has been developed to reduce the forthcoming

400 MHz scatterometer data. The differences in systems design and data

processing techniques justified this development of a new computer program.

One of the primary reasons a new program is necessary is the required

variable doppler concept. The 13.3 GHz program measures a constant doppler

frequency throughout a complete run and adjusts the angle (e) for changes

in forward velocity. This `echnique has been employed on the 13.3 GHz

program to reduce some of those errors introduced by the inability of the

analog filters to be frequently adjusted for velocity changes.

At the inception of the digital filtering it has become possible to update

the doppler frequency to coincide with a constant angle (A). The 400 MHz

program was programmed to accomplish this fact by changing the frequencies

to be filtered using the equation:



fd - ZV sin (6)
X

where:

f  = doppler frequency to be filtered

V = aircraft forward velocity

X = system wavelength

(6) = angle to be measured.

The velocity component is to be updated through the use of an ASQ-90 system

which can record flight parameters at 10/sec or 40/sec, either of which would

be adequate. Vector analysis of the pitch angle and vertical velocity

components will be accounted for in the filtering program.

Other considerations in the 400 MHz dual polarized program is the 400 Miz

system duty cycle and the multipolarization capabilities. These modifi-

cations are lengthy and time consuming in the existing 13.3 GHz program.

A 400 MHz program has been written and is presently in use.

Program capabilities and options available to investigators are:

• Lead card input of center frequencies.

• Lead card input of frequency bandwidths.

• Selection of data integration times in two parts.

• Selection of data ztart-stop times.

• Time history plots

• Power spectral density plot.

• Optional output in relative volts or decibels.
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3.3 GENERAL DISCUSSION OF BASIC 13.3 GHz PROGRAM

Formal documentation of this 13.3 GHz program is found in Scatterometer

Digital Filtering Program, FILTER, Report Number Q470, CAAD-NASA/MSC, by

R. D. Rogan and J. L. Fisher.

The basic program is composed of three routines: FILTER, TIMTAB and

REFLECT. FILTER computes the backscattered power within selected frequency

bands.

The data is noise-like, with a near-Gaussian distribution. Two sidebands

of doppler frequencies are folded into the range from 0 to 12.5 KHz on

one channel, and again on a second channel with a linear 90° phase shift.

The program unfolds the spectrum by modulating both channels to a higher

center frequency and adding the modulated channels in quadrature. A

Fourier transform is used to compute the frequency spectrum; adjacent

spectral amplitudes are squared and summed in the desired frequency bands

to simulate bandpass filtering with RMS averaging.

The two data channels are digitized at a rate of 25,000 samples per second

per channel. The computer program changes count values from the analog-

digital converters into voltage units.

To separate the forebeam data from the aftbeam data the following proce -

dures were, until recently, followed:

• A linear interpolation was used to increase the sample rate to

100,000 samples per second on each channel.

Modulated functions X and Y were formed by

X(nAt) = CH 1 (nAt) * cos (2w F znAt)	 n=0, 1, 2, ..., N-1

Y(nAt) = CH2 (nAt) * sin (27tFznAt)

r

r
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where	 F  = 12,500 Hz

At = time increment between samples

N = number of data samples over which to average

CH  = voltage samples from first (in-phase) channel

CH  = voltage sample from second phase-shifted) channel

• The sign-sensed function with separated sidebands was formed by

S(nAt) = X(nAt) + Y(not).

NOTE

The sidebands are separated only if CH 1 (t) and CH 2 (t)

are of equal gain. The RMS levels of both channels are

computed at the beginning of each run, and a correction

of up to 10% is applied to equalize the channels for the

retraining data.

• The Fourier Transform F(S) was computed over a time interval T with

a Fast Fourier Transform algorithm (Reference 1). The results are,

as before, two sets of coefficients a n and b  for n=0,	 2, ....,

N/2-1. The coefficients are "Hanned" to correct for filter leakage by

an = -0.25an-1 +0.5an -0.25an+1 , n =0, 1, 2,	 N/2-1,

"n = -0.25b n-1 +0.5bn -0.25b n+1.

Root-mean-square spectral amplitudes are computed by

An = 2	 ant + b n 2	 , n = 0, 1, 2, s.. 9 N/2 - 1.

• The harmonic numbe ,s n are used to identify each amplitude An

with a frequency F according to

n=F*T.

s
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Then the output of NF filters is simulated by

P i	A 2
n
	 i = 1 1, 2, 3, ..., NF,

with sums computed over each desired frequency range. After

the filtering is completed for each period T, and advance in

time is made, and the calculations are repeated. The interval

T is the effective filter averaging time. An effective roll-

off of 60 db/octave is attained in the case of the maximum T

(8192 data samples) for this application. The spacing of the

calculations may be specified to be greater than T, when desired,

to reduce computing time.

A new method of separating forebeam data from aftbeam data has been recently

developed by J. L. Fisher of the computation and Analysis Division, NASA/MSC,

and present data reduction employs this new method. The derivation,'written

by Mr. Fisher, is included in Appendix A of this report.

To continue, a buffered binary tape is written with both forebeam and aft-

beam data, designed for processing by the digital scatterometer data reduc-

tion program REFLECT.

The program REFLECT correlates the output of FILTER with the aircraft

guidance and navigation parameters and computes 
a
  fo each of the nine

angles both fore and aft, and, employing the SC4060 plotter, plots Qo

versus 9 curves. A statistical average and standard derivation for

requested time slices are also plotted with the angles. The program is

documented in Advanced Digital Refl(..:ivity Program, RFfDG, Report Number

TDR 825, by J. D. Garrett.

The third program for reducing scatterometer data is called TIMTAB. This

program computes reflection cell centers, the times of int-rsections of

the aircraft path with imaginary lines at nom ,*.nal angles to the vertical,

and cell center times. The program constructs a time ta b le which is used

:F
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in REFLECT and FILTER to determine the sampling of the scatterometer data.

The program is reported in Scatterometer Time Table Computations, TIWAB,

Report Number TDR 440, by J. D. Garrett.

The data is finally plotted in one of the formats described earlier and

released as hard copies in book form. Careful study is made of the output

to insure its quality prior to releasing it to the scientific community.

i

s	
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SECTION 4

SCATTEROMETER DATA DISPLAY USING THE

SPATIALLY ADJUSTED TIME HISTORY PLOT

For several years, the NASA Earth Resources Program has collected scattero-

meter data over land areas and the sea. During Chis time the data processing

techniques were constantly refined to upgrade the quality of the data and

to display the data in a form most usable to investigators. As more investi-

gators became aware of the value of scatterometer data, additional data

displays were developed to best fit their needs. The development of

scatterometers with multipolarization capabilities and/or operating at

different frequencies will increase, even more, the amount and worth of

scatterometer data to the Principal Investigator. This increase of data

will require that efficient handling and display techniques continue to be

developed to furnish the principal investigators maximum efficiency with

the best information for qualitiative and quantitative analysis of lard and

sea areas.

Present data display techniques consist of a  versus a plots. These plots

are now used to illustrate all kinds of data whether it be over land, ice,

snow or water; whether a terrain be homogeneous or inhomogeneous. Since

each investigator is concerned with the needs of his own scientific disci-

pline, the a  versus 6 plot does not necessarily help him. The oceanographer,

for example, is interested in data that is averaged over many data samples,

and the a  versus 6 plot is perhaps exactly what he is looking for. However,

the geologist is interested in abrupt changes in terrain such as fault lines

or transition areas between geological terrain types, might find that the a 

versus 6 plot is of little help.

In an effort to meet the demands of efficient data handling, a technique of

data display was developed that would supply the investigator with more

useful information.	 This techni que of display is called the Spatially



Adjusted Time History (SATH) plot, and is illustrated in Figures 4-1 and 4-2.

Much of the information about the terrain which was obtained in the past

with various aircraft remote sensors was presented by statistical rather than

discrete parameters. The radar backscattering cross section are examples of

such statistical information. The possibilities of identifying certain

pertinent ground features is limited by the application of such information.

When details of ground features, or its composition, are determined by using

such information, the results are said to be effective, compromised, or

averaged results. When the facts are reviewed it is found that valid

statistical information was presented; however, in many cases what was

actually desired was nonstatistical information - or discrete detail of the

surface. The "discreteness" of the ground parameters can be vastly improved

by the SATH process by increasing the resolution of the system and by

assimilating all the contained information through various techniques -

correlation is one such technique..

It should be pointed out that the SATH plot i5 most advantageous over inhomo-

geneous terrain. The 
a
  versus 6 plot is probably still best for over water

data.

The SATH plot offers the following advantages:

• It presents an overall display of a complete line of data to the

investigator. Figure 4-1 is a SATH plot of Mission 73, Site 130,

line 12 aligned with a photographic mosaic of the same area.

Although the SATH plot would consist of several lines of data

representing different angles, all of which would be time adjusted

to a single ground point, the data illustrated in Figure 4-1

represents only one angle (e = 20 0 ) for clarity of presentation.

This line represents the data that has been digitally filtered

and averaged at one second intervals. The one-second time

interval in this case was arbitrary and selected for purposes

of presentation only. The time interval used in an overall SATH

plot is a function of the velocity of the aircraft, the type of

terrain involved, and the objective of the flight (agricultural,

geological, etc.). Smaller time intervals such as 0.5 second in
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many cases has proven to display the data sati:-factorily. The

amount of computer time required by the digital filtering

program at this rate, however, would be increased accordingly.

• It allows the investigator to be selective in requisitioning

detailed data from NASA. The investigator can select from

Figure 4-1, those portions of the data that exhibit features

warranting detailed study. These selected portions may be

presented in a similar SATH plot at a higher sampling rate.

An illustration of this is shown in Figure 4-2, where a time

interval of 0.1 seconds is used for a selected segment of data.

Thv; computer time can be more efficiently utilized by being

selective in processing data rather than processing the entire

line of data at a high and costly data rate.

• It provides the capability of specifically locating near-

homogeieeous data for computing a o values within an entire

line of data. The present method of computing a  values of

terrain such as Mission 73, is to compute a  values for the

whole line. The SATH plot as shown in Figure 4-1 will enable

the investigator to select specific data, corresponding to

near-homogeneous terrain, with which to compute an average

a  value. An example of such near-homogeneous terrain is

illustrated at the beginning of the photograph of Figure 4-1

where an orchard is shown preceding a plowed field. The

data corresponding to this area should be used to compute

an average a  value of this

applied to the plowed field,

rea. The same process can be

or other specific features.

Thus the SATH presentation enables one to compute a  values

more definitively and efficiently.

Figure 4-3 shows the scatterometer data collected at three angles and

spatially adjusted. This data represents the same terrain shown in

Figures 4-1 and 4-2. Note how the characteristic hump on the data appears
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in all three angles at time 3 to 4 seconds. This feature would illustrate

to the principal investigator how the electromagnetic energy .:turn level

changes with angular return. The SATH technique of display emphasizes such

areas of terrain characteristics over a complete line of data.

Another exami!.e of this is shown in Figure 4-4 representing a segment of

data from Mission 76. This line crossed a small body of water which is

clearly illustrated in the data by the large return at time 40 to 50

seconds. Note how the data behaves as a function of angular return. The

"inversion" point characteristic of over water data is clearly visible in

this representation. The insert at the upper right of Figure 4-4 is a a 

versus 6 -lot made of this data and averaged over the width (or time

interval) of the characteristic "hump" enhanced by the SATH format.

The implementation of the SATH format will involve computer programming on

the SC4060 computer-plotter. The data from each angle can be time adjusted

through a geometrical translation to a single reference point. The

independent (time) variable can'be printed out to correspond with the

9 inch x 9 inch photograph by utilizing the aircraft velocity data. The

SC4060 can be programmed to print the independent variable to correspond to

any desired photograph length through this process. Utilization of the better

frame capability of the SC4060 will provide a continuous plot of data. The

final product can be stored on microfilm.

It is felt that the above described SATH technique will provide a more

efficient tool to the principal investigator by allowing him to edit the

overall data of a specific terrain and select specific areas of interest

for more detailed analysis. The technique will also permit NASA to utilize

computer time associated with the costly digital filtering program more

efficiently. The bulk of data printed will be reduced accordingly. It

is suggested that the overwater data continue to be displayed as a  versus

6 plots since the SATH format at this time does not seem to offer a greater

advantage in this area.
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Further studies in the area of data output formats should continue. It is

necessary that efforts continue to be expended to derive new methods of

remote sensor data display so as to enhance its usefulness to the entire

scientific community. The efforts should point toward identifying the most

basic data forms for each sensor in order that direct comparisons between

sensor can be achieved.
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SECTION S

DATA VALIDATION

Since the inception of the NASA Earth Resources Survey Program an enormous

volume of data has been collected from the 13.3 GHz scatterometer.

Investigators are requesting an increasing amount of this data to be

processed. The new dual-polarized 13.3 GHz scatterometer and the 1.6 Gtiz

scatterometer will increase the amount of data collected in future

missions and an increase in requests for data from user groups can be

expected.

The data processing load, if data validation procedures and optimization

techniques are not implemented into the data processing programs, will

cause much of the usefulness of this valuable data to be lost because of

the inability to process it in time to meet the requirement of the

scientific community.

This section presents a study of the present data validation procedures

and suggests methods of automatic editing which will, if implemented, help

speed the transmission of data to the investigators.

The present verification process is separable into three main areas:

• Pre-Mission verification

• Post-Mission verification

• Final computer output verification

An automatic data editing program can be implemented in the post-mission

phase of the validation and will allow phases two and three of the process

to be handled entirely on the digital computer. This will increase the

efficiency of the data verification procedure so that regardless of the

5	 '.
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amount of data requiring reduction, a minimum turn around time can be

maintained on all requests. Such an automatic computer program is

described in Appendix B.

This section also includes an introduction to the 13.3 Ulz single polarized

scatterometer system as well as a breakdown of the verification process

as it has been applied to the data.

At this point, a brief description of the present 13.3 (',Hz, single polarized,

scatterometer and data collection system is appropriate.

5.1 13.3 GNz SCATTEROMETER SYSTEM

Figure 5-1 is a block diagram of the 13.3 ©iz scatterometer. The transmitting

antenna radiates a broad beam (approximately 120 degrees) along the fore-

aft axis of the aircraft and a narrow beam (approximately 2.5 degrees) along

the port-starboard axis of the aircraft. The receiving antenna is identical

to the transmitting antenna which makes the two-way beamwidth about 100

degrees by 2.5 degrees.

As the aircraft is flown, data is received from all angles of incidence

simultaneously. The data is detected by a direct-to-audio technique and

amplified. It is th.<:ri collected on two channels in phase quadrature and

recorded on an onboard FM tape recorder. Splitting the received data into

quadrature pairs is done for the purpose of later combining the two channels

in a single sideband modulator to separate the forward duppler spectrum from

the aft spectrum. Also on one channel, a ferrite modulator enables the

insertion of a calibration signal that is independent of all other system

parameters. All the collected data is then referenced to the calibrate

signal during data reduction with the result that an absolute rower level

reference is defined for every data point on the finalized output.

r
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5.2 PRE-MISSION CHECK PROCEDURES

The main purpose of the pre-mission check is to ascertain if the equipment

is operating properly. Test data is collected in a flight over a prescribed

area covering both land and water. The information is reduced immediately

using quick-look analog reduction techniques. To isolate equipment errors

the reduction process is accomplished in two different formats, Power

Spectral Density (PSD) plots and Time History (Ttl) plots.

To det;--t frequency interference and ocher system problems, the PSD's are

made from one second analog data tape loops and played back on a look

recorder and through a sweep-filter power spectral analyzer. The sweep

oscillator on the analyzer produces a continuous output, through a log

converter and X-Y recorder, of signal amplitude versus frequency. A block

diagram of the process and an example of a PSD are shown in Figures 5-2

and 5-3.

The TH's art made by tuning the'oscillator of the spectral analyzer to

particular f.-equencies corresponding to specific incident angles.* The

data tape is played through the analyzer and a plot of signal amplitude

versus time produced by a pen recorder. Several time histories of signal

amplitude are usually produced over the same data. by running the tape back,

resetting the analyzer and plotting. It is the usual case when selecting

a set of frequencies for plotting to include the calibrate signal frequency

and a frequency far enough beyond the systems signal range to represent

system noise floor. A block diagram of the time history procedure appears

in Figure 5-4.

* Frequency and angle are related through doppler frequency equation

ev
	 fd = 2V sin e.

X
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The PSD's and TH's are studied to determine if variations in the data are

valid ground return signals for the test area flown or are indicative of

equipment malfunctions. Past )xperience with the data over the same and

similar terrains and comparisons with theoretically expected returns for

the test terrain are used in determining the validity of that data.

Since it is often difficult to determine if a particular data variation

is a function of terrain or is a system problem, system tests are Fz^rformed

on the ground. The equipment is placed in an operational mode but4the

antenna is prevented from radiating by the placement of Echosorb over its

elements. Only the internal system noise level is recorded without the

uncertainty of actual reflected data. After recording, this information

is played back through an analyzer and studied in the same manner as

previously described PSD's or TH's.

There are three advantages to beginning the verification process at this

pre-mission phase:

• Provides information for detection cif system problems so that

repair, modification or adjustment to correct these problems

can be initiated prior to a mission.

• Provides information for formulation of a data reduction plan

for mission data which could circumvent or correct for those

problems which could not be adjusted prior to the mission.

• Provides data to compare with post-mission test data to

determine what, if any, additional problems occurred during

the mission.

S-6



NR.

5.3 POST-MISSION VERIFICATION PROCEDURES

A similar quick-look analog check of the data should be made routinely upon

return of the aircraft from an actual mission. The actual post mission

phase of verification, however, is a digital process. It is in this area

that the greatest savings in time and cost could be realized with an

automatic data validation and editing program. The emphasis in this phase

is on the quality of the data collected and the determination of the optimum

procedures for final data reduction.

In the past, data quality has been checked by reduction of analog and/or

digital PSD's and TH's. The study of these plots made it possible to

identify specific problem areas and to recommend optimum data reduction

procedures. This method has shown certain weaknesses as a result of the

increased volumes of data being requested and reduced. During peak periods

computer time becomes critical and as much data as possible is reduced

during each available processing interval. This reduction is usually

accomplished without regard to any problems which may require special

processing procedures.

There is a time lag between the production and study of PSD's and TN's and

the resulting recommendations for data reduction. In the past some data

was needed by investigators before the validation checks were completed.

This resulted in the processing of some invalid data which was costly in

terms of the computer time. The years of experience with scatterometer

data must be formulated and incorporated into an automatic data editing

program to combine editing and processing into a single step which would

eliminate the reduction of bad data.

Some of the types of problems identified in the past are outlined in

Table 5-1. Examples of these problems as they appear in analog processing

are displayed in Appenuix C. which also describes the methods used in

recovering ,uch data during processing.
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a

It is obvious from these examples that by generating digital PSD's and

TH's and checking them internally this phase of data verification can

become entirely automated.

5.4 GENERATION OF DT^'T 'AL PSD's

400 Hz and 400-Hz harmonic interference has been one of the biggest problems

associated with the determination of data quality. To recognize such inter-

ference and to determine the data quality in the presence of this inter-

ference is of prime importance. The generation of a PSD would display the

data as a function of frequency and thereby enable identi P4cation of the

interference spectrum.

The traditional method for calculating the power spectral density function

i.e., the power per unit cycle in a signal has been to take the cosine

Fourier transform of the autocorrelation function. Mathematically, if

GR(F) is the pos er spectral density function evaluated at specific frequency

increments then:

M-1

GR(F) = 2h	 Ro + 2	 R  cos	
^rf	

+ R cos it mf

r=1	 c	 c

where Fa n . Af, n • 0, 1, 2, ..., m
h • time increment between data values
Rr= autocorrelation function*

Fc= cut off frequency 1
Z-

Afm specified frequency

* Autocorrelation Function R r can be defined as

Rr	
1	 Xn' Xn + r r = lag number • 0,1,2,...,m

n=

4 N = number of data values 	 X  • Adjusted data value (Xn - j
±	 X	 mean of data values	 m * maximum lag number

+.+

• r

(l	 5-11



more simply, if P i is the power in a frequency band BW about a discrete

frequency, fit the power spectral density at that frequency and bandwidth

can be defined as:

Pi
Gi = - W

By applying the Fast Fourier Transform Algorithm the power in any band is

readily determined since

BW
fi+I---

Pf (BW) _	 A2(f)
i	

f=fi - -rBW

where P  (BW) = Power in band of BW centered at Fi.
i

A2 (f) = Squared Fourier amplitude for frequency f.

Gi is then calculated from the P f values by dividing by BW. A OSD

computed within each 18-second seiment of digitized data would be sufficient

to yield a sample spectra for each mile of terrain along the flight path.

This sample rate will be made flexible to enable computations to be made

more or less frequently when desired. Each plot would be a function of

frequency from zero Hz to slightly beyond the calibrate signal frequency.

Once generated, the PSD format can serve as the basis for the application

of statistical techniques to determine the extent of unwanted interference

in the signal.

To begin the sequence of tests, each plot will first be defined by a best

fit polynominal. Pre-programmed routines are available for the application

of this technique which involves selecting a polynominal of the form

N
n	Y(X) _F 

anXn

n=o

5-12



and adjusting the coefficients a
n 

to minimize the expression

M

D2 	02M
m*1

where the Dm are the difference between the measured data (values of the

PSD) and the polynominal ordinate at the M points X m , m = I t M. In practice

the order of the polynominal, N, is chosen such that N<<M (N n 3 can serve as

a first estimate to this polynominal in this particular application).

With the PSD defined by a best fit curve it will be possible to check for

variations of the individual data points about this curve and a tabulation

made of the points with a variance from the nominal of greater than t4 db.

If more than eleven* such variations are noted within the frequency bank

from 0 to 6 GNz the data can be rejected and further examinations made.

The results of this test can be used to determine if further tests are

required. Such tests would include a measurement of signal dynamic range

(range of the peak signal to the noise) and a measurement of the relative

position of the noise with respect to the calibrate signal power reference

level.

5.5 DYNAMIC RANGE

The dynamic range of the signal can be determined automatically by

identifying the coordinates with the largos* and smallest "y" components

during computation of the best fit curve mentioned previously. Identifying

the abscissa or "x" component yields the frequencies at which the high and

low values occurred. A relative comparison of these two ordinates is a

measure of the dynamic range of the signal. A dynamic range of less than

18 db would require further study of the data.

* This is a first estimate (based on past experience) of the number of bad

data points required to invalidate the data within this frequency band.

C.
	 Experience with the testing procedure will yield an optimum value. This

is true of all actual values used in this document.
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5.6 TIDE HISTORffiS

A series of tests designed to provide information about the stability of

the data as a function of time can be implemented at the time of digital

filtering. Costly computer time can be saved if these tests are designed

to stop the filtering process when data is of poor quality in terns of its

stability with time. An alternate procedure would be to implement the

checks after filtering but prior to final processing in the REFLECT portion,

of the present program. This system would also provide the means for

reducing processing time and costs.

The testing consists of monitoring the voltage levels at the outputs of

the digital filters and performing comparative analyses with these monitored

levels. Individual checks wile. be made of the 10 KHz (nominal) calibrate

signal and the 9 KHz (nominal) noise floor level. The information obtained

from monitoring these two signals will be used to check their stability over

particular time intervals and to determine their positions relative to each

other.

The output of the calibration or reference filter can be sampled for a At

time interval. A straight line can then be fitted to this data and a

tabulation made of those points varying from the nominal by more than

±2 db. The criterion for examining the data more closely would be for the

number of points outside the limits to exceed eight (8) in one 15-second At.

If each such interval is identified, the data within them can be excluded

from further processing. The editing program can further be designed to

stop the filtering process when the number of extreme points becomes

excessive in three or more successive At intervals.

Using the outputs from the noise floor filter, a similar test can b.i desggned

to determine its stability. Combining the two tests can be considered such

that before storping the filter program, excessive variations would have

to appear in corresponding intervals on both the calibration and noise

floor channels.

t
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5.7 PEAK CALIBRATE LEVEL TO NOISE MEASUREMENT

The position of the noise floor relative to the peak calibration power

level is of importance in determining data quality. A relative difference

of less than 15 db suggests a high noise level or a poorly defined calibrate

signal either of which can be indicative of multiple system problems, as

shown in Table 5-1.

The test for measuring this relative difference can be done in parallel

with the above stability check.

In this case the voltages monitored over the At intervals would be averaged

and the ratio n / ER computed, where E^ represents the average voltage

from the noise floor filter and ER that of the reference signal filter.

A relative difference in decibels is found with the logarithmic equation:

Relative Voltage Difference = 20 log 
En /ER

If this ratio, which may need to be computed only every fourth At, is

found to be less than .18 db* for any one sample the interval ' s time is

tabulated. These intervals then do not enter into fin al processing without

further examination. As before, the filtering process can be stopped

completely to compensate for the extreme situation where sevaral successive

intervals fail the test.

5.8 CONCLUSIONS

The above represent ideas about the types of tests which will be required

to determine the feasibility of a data editing and validation program.

They are the extension to the computer of the processes presently applied

manually to check the quality of the scatterometer data.

* Minus sign signifies En>ER
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To implement a trial program, it will be necessary to have data on magnetic

tape in raw digitized form sampled at the presently used rate of 25 KHz per

channel. Also required on tape will be data in raw filtered form at the

output of the present digital filtering system.

Once feasibility is proven and such a program is integrated into the present

computer processing system, the entire second phase of the validation

procedure would be entirely automated.
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APPENDIX A

DERIVATION OF SIGN SENSING ROUTINE

BY J. L. FISHER NASA/MSC
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SIGN -SENSING

A DIGITAL SOLUTION IN THE PREQl1ENCY DOMAIN

It will be shown that ffign -sensing can be oJiminatod altogether and that

the positive and negative doppler sidebands can be separated by simple

interpretation of the Pourier Transforms already being used in obtaining

the doppler spectrum. No interpolation will be required.

The sequence of processing the digital time-series of data 7alues repre-

senting an "integration period" is read into the computer memory, the

necessary calculations are performed, and the doppler spectrum (or values

derived from it) are recorded. Another sequence is then input and the

cycle is repeated, etc., until all the data have been processed. Now

examine one of these cycles; i.e., a sequence of discrete time-series

values is in core memory as follows:

CHI(n) • CH1(ndt), n ' n 0, 1 0 2 0 ..., N-1

CH2(n) n 02(rAt), n s 0, 1, 2, ..., N - 1

Where N n number of data samples being used in the calculations.

This data collectian represents a time sequence selected at a random

starting point as shown for one of the Doppler components:

^—	 — Data Collection	 — —

I

Coscat t

Time
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For any doppler component present in the signal, there will be a phase

difference #W of the component with respect to the beginning of the data

sequence. Since the Fourier Transforms will preserve phase information

relative to the beginnin& of the sequence, the two channels should be

represented with respect to the starting point also:

CHI(n) = 2( A+ + A- ) cos (wnAt - ^W ) n = 0, 1, 2, ..., N-1

02(n) = Z(A+ - A-) sin (wnAt

Some useful relationshiis will now be developed; showing what happens to

one component w:

Let x i (n) = CH1 (n). cos (w0nAt)

= 1(A+ + A- ) cos [(ul0 + w)na - ^]+ I	 + q-)

COs [(W0 - w)nAt + mW]

[Identity used: coax cosy • If cos(x+y) + dos (x-y)]

x2 (n) = CH2 (n) . sin (wonft)

=-!(A_ - A+) cos[(WO + w)nAt- 4w)] +	 (A+ - A-)

cos [(w0 - w)nllt o 

[Identity used: sinx siny = -ros (x+y) + -f cos (x-y)]

A-3
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Now form

x3 (n) a x l (n) + x 2 (n) _ -f A_cos [(w0 + w)net - mw]

jA+cos [(w0 - w) nat + #W)]

x4 (n) s x l (n) - x2 (n) n I cos [(w0 + w) not - 0W)]

+ jA _cos [(wo - w)nat + ^W]

Now for w0 =w,

x3 (n) _ j► _ cos [ (2w) nI * - ^W ] + iA+cos m
w

x4 (n) s l? cos [(2w)not - 0W ] + ►_cos 0w

The 2w terms here exceed the sampling resolution, but their amplitudes

will be harmlessly folded to some other frequency. The useful property of

x3 and x4 is that they have D.C. , or "average" values equal to I cosh

and j1_coSOw , respectively; i.e.,

^A+ (w) coso w (average) _ 9 n=U	 x3 (n)

j►_ (w) cos mw (average) A nu0 x4 (n)

But since x3(n) s x l (n) + x2 (n), i►re can write

A-4
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t	
IA+(w) Cosow : x5 (w)	 I n 0 CH1(n) ,cos (w nAt) + n U CH2 (n)

sin(w nAt)

= Re[,00^
W
 (CH2)]	 - ImW (CHI)]

And !: in%;e x4 (n) = x 1 (n) - x2 (n) , we can write

A - (w) cosow = x
6 
(w)= Re[c;rw- (CHI)] + Im [(CH2)]

We then have the amplitudes A
+ 
(w) and A - (w) for any doppler frequency

w, except for the cosow factor.

Now examine what happens if we reverse the role of CHI and CH2 and repeat

the preceding logic:

Let

xl (n) = CH2 (n) . cos (w0nAt)

= 2(A+ - A-)sin(wnAt - ^).cos(wOnAt)

x2 (n) = CH 1 ( n) . s in ( w 
0 
nAt)

2(
A+ + A- ) cos (wnAt - ^) .sin(wonAt)

Form

3 (n) = xl (n) + x2 (n)

= 2(A+ - A-)sin(wnAt - 0 )cos(wonAt) + 2(A+ + A-)

	

C,
	 cos(wnAt - ^w)sin(w0nAt)
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= 1A sin w + w nAt -	 -	 +
2 + [( 0	 )	 ^w] tA- in C(w0 w) 

n t ^w ]

Similarly,

4 (n) = A 1 (n) x2 (n)

_ ^A-sin [ (w0 + w) not	 -j'A+sin [ (w. - w) not + ^w]
w

Once again, for w0 = w, we get a do component;

QS (n)	 ^3 (n) (average) = ZA - lino, = -Im [aT (CHI)]

+ Re[o°W (CH2)]

Q6 (n)	 4 (n) (average) _ Â s^in^ = lm[,g,- (CH l)]

+ Re[vP- (CH 2)

We again have the desired quantities A + (w) and A_(w), except this time

there is an unwanted sink term.

Now form

x 7 (w0) 	 [x5 (w)] 2 + [x6 (w)] 2

[ 2 + (w) cos^w] 2+ [ ZA+ (w) sin0w]2

= 4A+ (w) cos 2^w + 4 + (w) sin 2^w

= 4A+ (w) (Cos	 + sin2^w)

s + (w)

G
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And likewise form

x8 (W0) = [x6 (w)] 2 + [xs(w)] 2

_ jA? (w0)

Note that the phase angle W drops out and the A+ (w) and A (w) amplitudes

for any frequency w can be derived from x s" x6 , xs , and x6 ^ which are

simple combinations of the Fourier Transforms of CH1 and CH2. A summary

of the procedure follows:

Step 1, Input N values of CH1 and N values of CH2.

Step 2. Compute the Fast Fourier Transform of CH1 , a°r'(CH1) , and

also ca'- (CH2) . The result will be 
2
tL complex values for

each transform:

cp 'W (CH1) = Re[cg"w (CH1) - j Im[c°"w (CH1)] ; 	 j = V -j

^(C12) = Re[^ (CH2) - j Im[d° W (CH2)]

The c9w will be computed at the frequencies

W 	 0, wl , 2W1 , 3w	
N

1 , ..., (2 - 1) W1

Where w  = 27r (nGt)

Step 3. For the doppler frequencies of interest, compute the positive

and negative squared amplitudes by

4A. (w) = ; Re[^ (CH1)] - Im[d (CH2)] 2 + Im [csW(CH1)] +

Re[v(CH2)]1 2
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1 2 (w){Re[ (CH1)] + Im [o (CH2)]1 2 + {-ImK(CH1)] +

Re [c (CH 2)) } 2

The squared amplitudes may then be summed over frequency bands of interest

to simulate bandpass filtering.

Note: In the MSC computer program, the Fourier coefficients are smoothed

by "Nanning."
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GLOSSARY OF TERMS

CHI(n)	 = The digitized, scaled time sequence representing the "in-phase"

channel; i.e., this channel leads the second channel by 90° at

all frequencies.

CH2(n)	 = The digitized, scaled time sequence representing the "out-of-

phase" channel; i.e.,, this channel lags the first channel by 90°.

CF W	 = The Fast Fourier Transform of E
^(&)	 = The Fourier coefficient from the transform of the function

corresponding to the particular angular frequency w.

Re[c W( &)] = Real part of o (^)

Im (0	 = Imaginary part of ^ (&)

A+ (w)	 = Positive doppler amplitude at angular frequency w (Fore Beam)

A- (w)	 = Negative doppler amplitude at angular frequency w (Aft Beam)

ow	= Phase of the component with angular frequency w, with respect

to beginning of integration interval.

F
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A computer subroutine is required to identify invalid data and halt the

processing when performed on useless data. This subroutine will use the

PSD curve and therefore should be inserted in FILTER portion of the program

just behind the Fast Fourier Transform.

Data editing is accomplished by fitting a curve to segments of the data in

turn. Data points which lie too far from the curve are replaced with com-

puted points lying on the curve. Interference with the scatterometer

reception by extraneous frequencies can be detected by data editing and a

decision whether to correct for the interference or stop the present batch-

processing can be made by computer, with suitable diagnostic printouts

provided.

This appendix develops the algorithms required for data smoothing and

determines the criteria for deciding upon the validity of data points.

The implementing of least-squares polynominal curve-fitting to given data

can always be expressed as weighted ,sums of the data. These weights which
are a function of the number of points to be considered in one application,

and of the interval between points, are computed only once, and then always

used. Data with Gaussian noise is smoothed and compressed by forming a

weighted sum of measurements over a span of points any. replacing the actual
value at the midpoint by the weighted sum. Thus the smoothed value, yo , at

the midpoint of the twenty-one points

Y-10, Y-9,....+ Y-119 Y0 , Y 1 , Y1 , 0.00,9 
Y9' Y10

is formed with the equation

Y0 = W-10 Y-10+ W
-9 Y-9 +.'...+ W-1 Y-1

W 
0 
Y 0 + W, Y, +....+ W 

9 
Y 9 + W

10 Y10	 ^1)

where the W  have been pre-computed and stored in computer memory.

ki
:fit c
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To evaluate the weights, Wi , the degree of polynominal and the number of

measurements in the smoothing process must be determined. The PSD curve

for scatterometer data can be assumed to be represented by the quadratic

model

	

y = a + bx + cx2	(2)

over spans of up to 80 adjacent data points. Here x is the frequency in

Hz and y is the number of relative volts in decibels. The values of y

are given at equal intervals of x (denoted Ax) which is a function of

sampling rate. For example, Ax equals 12.20703 Hz for the 13.3 GHz

vertically polarized scatterometer.

If the origin of coordinates is translate:: to the center point of n data

points (n an odd number) the least-squares solution for a, b and c in (2)

can be determined by the following arithmetical operations:

1. Form A and B:

2
A = -T - p (p+ 1) (2p+ l )

B = 2A x2 0 4 + 24 +....+p4)

where

	

p + 1/2(n-1)	
(3)

2. Form Va , Vb , Vc , and Vac'

B
Va n— g --

Vb = 1/A

V =	
n

C
	 nB-A2

V = -A
ac nB-A2

B-3

7



k 4

C 0 3. Form Yl , Y2 and Y3:

Y  n Y-P + y-P+l +1000+ Y-1 +yo

+y 1 +....+ yP-1 + y 	 (4)

Y 2 = Ax	 -pY-P -(P-1) y-P+l -1111

-y-I + Y 1 +0000 +(P-1)yp-I + PYp 	(5)

Y3 = 0x2
 Ip 2 Y -P + (p-1)2y-P+l+....

+Y-l+yI+...:+(p-1)2Yp-l+p2YP
	

(6)

The least squares solution for a, b and c are then given by three equations:

(7)(8)
	

(9)
a- VJl + VacY3	 b a VbY2	

c _ Vacy 1 +V c 
Y
3

For x = 0, that is, the midpoint, the best estimate for y is

^= a	 (10)
yo

by the least-squares criterion, and to compute adjusted data points the

equation

9i = a+bi4x+ciAx2
	

(11)

(i = -p, -P+1, **so$ -1 0 0 2 1, 111 . 1 ? p- 1 9 P)

is utilized.
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To program (7), (8) and (9) in a form for most efficient computation, a, b

and c are all written as weighted sums of the data:

a. u-p y-p + u-p+l 
y-p+l 

+....+u-ly 1

+uoyo + ulyl +0000+11p- lYp-l+upyp	 (12)

b = v -py -p + v-p+ ly-p+l+....+v-ly-1

+voYo+v,Y, ...... vp-lYp-l+vpyp	 (13)

c = w-py-p+w-p+ ly-p+1 +0000
+w-1y-1

+woyo+W ly l+....+wp-lyp-l+wpyp	 (14)

where the u, v and w arrays are derived by substituting (4), (5) and (b)

into (7), (8) and (9). Performing this substitution, it is found that

ui u-i

vi ' v-1

wi w-i

(i = 1, 2 9 0.00 0 p)

and the p+l equations for the weights may be written as follows:

No

c
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u	 Vo	 a

u l • Va+VacAx2

u 2 • Va+4VacAx2

up-1 = Va+Vac (P-1)2 Ax 

up • Va+Vac P2 Ax 

w	 00

w l • Vac+Vc Ax 

w2 • Vac+4Vc Ax 

wp-1 ' Vac + (p-1) 2 V  Ax 

wp • Vac + 
P2Vc Ax 

v0 • 0

v 1 = V  Ax

v2	 2V  Ax

vp-1 = 
(P-1) Vb Ax

vp = pVb Ax

The variance of the adjusted value of the midpoint, a 2 , can be computed

with

nB-A

where 
a
  is the rms of the differences between pairs of raw data values and

data values computed using (11). The square root of the variance, the

standard deviation, is a measure of the validity of the data and is the

C
	 criterion by which data is edited and justified for validity.

B-6
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The deviation of a data point from the least-squares curve point correspon-

ding, will have a probability of 68.3% of being less than lad, 9S.4% of

being less than 20A and 99.7% of being less than 3a^. Thus, on the average,

only three points out of a thousand should scatter from the least-squares

value by more than 3a^, and if significantly more than three points do

diverge farther than 30Y, it is an indication that data on this part of the

PSD curve is invalid. Exactly what multiple of a^ will be employed for the

criterion will be established by trial and error, with an initial value

of 30A.

Invalid data will be tested to determine whether its frequency lies within

one of the bandwidths defining the angles of the a o curve, and if so, that

point of the a  curve will not be computed, for it would be erroneous.

To summarize, the data validation computer subroutine will perform the

following steps:

1. With the first n points of the PSD curve, form a, b, and c with

(12 0 (13), and (14), using the pre-computed weights. (The value

of n must be determined by experimenting with data. Initial

trial values will be 21, 31, and 41).

2. For 3a  employing (11) and (1S).

3. Test the n differences, data points minas computed points, to

identify pcints deviating by more than .{aA

4. Test the frequencies of "wild" points to determine whether they

lie in an angle-defining bandwidth. If so, do not form a  for

that angle.

S. Do steps 1 to 4 with the next n points and continue until all

points are processed.

C
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.APPENDIX C

CHARACTERISTIC PROBLEMS IDENTIFIED THROUGH DATA VALIDATION PROCEDURES



This appendix contains actual analog and digital outputs Figures C-1 to C-12.

Each is an example of one or more of the system, collection, and reduction

problems outlined earlier in Table 5-1.

Table 5-1 is repeated here for convenience in referring to the various

error categories. Also included on each figure is a summarizing statement

on the means of extracting as much useful data as possible from such line.
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NOTE: Digital Check Procedures show erroneous data point
(60 degrees) biased leg noise during digitizing.
(New system has eliminated this problem.)
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Figure C-10 Reflectivity Plot
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NOTE: Digital Check Procedures show similar problem to
that shown in Figure 10. However, the problem
occurred in the downward direction and at a different
incidence angle 20 degrees.
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Figure C-11 Reflectivity Plot
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