145 research outputs found

    Which bills are lobbied? Predicting and interpreting lobbying activity in the US

    Get PDF
    Using lobbying data from OpenSecrets.org, we offer several experiments applying machine learning techniques to predict if a piece of legislation (US bill) has been subjected to lobbying activities or not. We also investigate the influence of the intensity of the lobbying activity on how discernible a lobbied bill is from one that was not subject to lobbying. We compare the performance of a number of different models (logistic regression, random forest, CNN and LSTM) and text embedding representations (BOW, TF-IDF, GloVe, Law2Vec). We report results of above 0.85\% ROC AUC scores, and 78\% accuracy. Model performance significantly improves (95\% ROC AUC, and 88\% accuracy) when bills with higher lobbying intensity are looked at. We also propose a method that could be used for unlabelled data. Through this we show that there is a considerably large number of previously unlabelled US bills where our predictions suggest that some lobbying activity took place. We believe our method could potentially contribute to the enforcement of the US Lobbying Disclosure Act (LDA) by indicating the bills that were likely to have been affected by lobbying but were not filed as such

    Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy

    Get PDF
    From 2008 through 2019, a comprehensive research project, SFB 754, Climate - Biogeochemistry Interactions in the Tropical Ocean, was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used

    Direction-Selective Circuitry in Rat Retina Develops Independently of GABAergic, Cholinergic and Action Potential Activity

    Get PDF
    The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience

    Hydrogen storage in porous geological formations – Onshore play opportunities in the Midland Valley (Scotland, UK)

    Get PDF
    Hydrogen usage and storage may contribute to reducing greenhouse gas emissions by decarbonising heating and transport and by offering significant energy storage to balance variable renewable energy supply. Underground storage of hydrogen is established in underground salt caverns, but these have restricted geographical locations within the UK and cannot deliver the required capacity. Hydrogen storage in porous geological formations has significant potential to deliver both the capacity and local positioning. This study investigates the potential for storage of hydrogen in porous subsurface media in Scotland. We introduce for the first time the concept of the hydrogen storage play. A geological combination including reservoir, seal and trap that provides the optimum hydrogen storage reservoir conditions that will be potential targets for future pilot, and commercial, hydrogen storage projects. We investigate three conceptual hydrogen storage plays in the Midland Valley of Scotland, an area chosen primarily because it contains the most extensive onshore sedimentary deposits in Scotland, with the added benefit of being close to potential consumers in the cities of Glasgow and Edinburgh. The formations assessed are of Devonian and Carboniferous age. The Devonian storage play offers vast storage capacity but its validity is uncertain due to due to a lack of geological data. The two Carboniferous plays have less capacity but the abundant data produced by the hydrocarbon industry makes our suitability assessment of these plays relatively certain. We conclude that the Carboniferous age sedimentary deposits of the D’Arcy-Cousland Anticline and the Balgonie Anticline close to Edinburgh will make suitable hydrogen storage sites and are ideal for an early hydrogen storage research project
    • 

    corecore