191 research outputs found

    Towards a microscopic description of the fission process

    Get PDF
    One major issue in nuclear physics is to develop a consistent model able to describe on the same footing the different aspects of the fission process, i.e. properties of the fissioning system, fission dynamics and fragment distributions. Microscopic fission studies based on the mean-field approximation are here presented

    Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

    Full text link
    A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator Coordinate Method and mapped onto a 5-dimensional collective quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and neutron numbers N less than 200. The properties calculated for the ground states are their charge radii, 2-particle separation energies, correlation energies, and the intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels up to J=6, the lowest excited 0^+ states, and the two next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei which have tabulated measurements. The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693 of them, are provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is accepted by Physical Review

    Structure properties of 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm fission fragments: mean field analysis with the Gogny force

    Full text link
    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007

    Kernel Methods for Document Filtering

    No full text
    This paper describes the algorithms implemented by the KerMIT consortium for its participation in the Trec 2002 Filtering track. The consortium submitted runs for the routing task using a linear SVM, for the batch task using the same SVM in combination with an innovation threshold-selection mechanism, and for the adaptive task using both a second-order perceptron and a combination of SVM and perceptron with uneven margin. Results seem to indicate that these algorithm performed relatively well on the extensive TREC benchmark

    Role of deformation on giant resonances within the QRPA approach and the Gogny force

    Full text link
    Fully consistent axially-symmetric-deformed Quasi-particle Random Phase Approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed 2628^{26-28}Si and 2224^{22-24}Mg nuclei as well as in the spherical 30^{30}Si and 28^{28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.Comment: 12 pages, 6 figures and 4 tables, accepted in PR

    Fission Dynamics: The Quest of a Temperature Dependent Nuclear Viscosity

    Get PDF
    oai:ojs2.jnp.chitkara.edu.in:article/2This paper presents a journey within some open questions about the current use of a temperature dependent nuclear viscosity in models of nuclear fission and proposes an alternative experimental approach by using systems of intermediate fissility. This study is particularly relevant because: i) systems of intermediate fissility offer a suitable frame-work since the intervals between the compound nucleus and scission point temperatures with increasing excitation energy are much smaller than in the case of heavier systems, ii) the dependence of viscosity on the temperature may change with the fissility of the composite system; iii) the opportunity to measure also observables in the evaporation residues channel translates into a larger set of effective constraints for the models

    Numerical search of discontinuities in self-consistent potential energy surfaces

    Full text link
    Potential energy surfaces calculated with self-consistent mean-field methods are a very powerful tool, since their solutions are, in theory, global minima of the non-constrained subspace. However, this minimization leads to an incertitude concerning the saddle points, that can sometimes be no more saddle points in bigger constrained subspaces (fake saddle points), or can be missing on a trajectory (it missing saddle points). These phenomena are the consequences of discontinuities of the self-consistent potential energy surfaces (SPES). These discontinuities may have important consequences, since they can for example hide the real height of an energy barrier, and avoid any use of a SPES for further dynamical calculations, barrier penetrability estimations, or trajectory predictions. Discontinuities are not related to the quality of the production of a SPES, since even a perfectly converged SPES with an ideally fine mesh can be discontinuous. In this paper we explain what are the discontinuities, their consequences, and their origins. We then propose a numerical method to detect and identify discontinuities on a given SPES, and finally we discuss what are the best ways to transform a discontinuous SPES into a continuous one.Comment: 14 pages, 9 figure

    A Generic Transferable EEG Decoder for Online Detection of Error Potential in Target Selection

    Get PDF
    Reliable detection of error from electroencephalography (EEG) signals as feedback while performing a discrete target selection task across sessions and subjects has a huge scope in real-time rehabilitative application of Brain-computer Interfacing (BCI). Error Related Potentials (ErrP) are EEG signals which occur when the participant observes an erroneous feedback from the system. ErrP holds significance in such closed-loop system, as BCI is prone to error and we need an effective method of systematic error detection as feedback for correction. In this paper, we have proposed a novel scheme for online detection of error feedback directly from the EEG signal in a transferable environment (i.e., across sessions and across subjects). For this purpose, we have used a P300-speller dataset available on a BCI competition website. The task involves the subject to select a letter of a word which is followed by a feedback period. The feedback period displays the letter selected and, if the selection is wrong, the subject perceives it by the generation of ErrP signal. Our proposed system is designed to detect ErrP present in the EEG from new independent datasets, not involved in its training. Thus, the decoder is trained using EEG features of 16 subjects for single-trial classification and tested on 10 independent subjects. The decoder designed for this task is an ensemble of linear discriminant analysis, quadratic discriminant analysis, and logistic regression classifier. The performance of the decoder is evaluated using accuracy, F1-score, and Area Under the Curve metric and the results obtained is 73.97, 83.53, and 73.18%, respectively
    corecore