796 research outputs found
Singular vector-based targeted observations of chemical constituents: description and first application of the EURAD-IM-SVA v1.0
Measurements of the large-dimensional chemical state of the atmosphere provide only sparse snapshots of the state of the system due to their typically insufficient temporal and spatial density. In order to optimize the measurement configurations despite those limitations, the present work describes the identification of sensitive states of the chemical system as optimal target areas for adaptive observations. For this purpose, the technique of singular vector analysis (SVA), which has proven effective for targeted observations in numerical weather prediction, is implemented in the EURAD-IM (EURopean Air pollution and Dispersion – Inverse Model) chemical transport model, yielding the EURAD-IM-SVA v1.0. Besides initial values, emissions are investigated as critical simulation controlling targeting variables. For both variants, singular vectors are applied to determine the optimal placement for observations and moreover to quantify which chemical compounds have to be observed with preference. Based on measurements of the airship based ZEPTER-2 campaign, the EURAD-IM-SVA v1.0 has been evaluated by conducting a comprehensive set of model runs involving different initial states and simulation lengths. For the sake of brevity, we concentrate our attention on the following chemical compounds, O3, NO, NO2, HCHO, CO, HONO, and OH, and focus on their influence on selected O3 profiles. Our analysis shows that the optimal placement for observations of chemical species is not entirely determined by mere transport and mixing processes. Rather, a combination of initial chemical concentrations, chemical conversions, and meteorological processes determines the influence of chemical compounds and regions. We furthermore demonstrate that the optimal placement of observations of emission strengths is highly dependent on the location of emission sources and that the benefit of including emissions as target variables outperforms the value of initial value optimization with growing simulation length. The obtained results confirm the benefit of considering both initial values and emission strengths as target variables and of applying the EURAD-IM-SVA v1.0 for measurement decision guidance with respect to chemical compounds
The ocean carbon sink – impacts, vulnerabilities and challenges
Carbon dioxide (CO2) is, next to water vapour, considered to be the most important natural greenhouse gas on Earth. Rapidly rising atmospheric CO2 concentrations caused by human actions such as fossil fuel burning, land-use change or cement production over the past 250 years have given cause for concern that changes in Earth’s climate system may progress at a much faster pace and larger extent than during the past 20 000 years. Investigating global carbon cycle pathways and finding suitable adaptation and mitigation strategies has, therefore, become of major concern in many research fields. The oceans have a key role in regulating atmospheric CO2 concentrations and currently take up about 25% of annual anthropogenic carbon emissions to the atmosphere. Questions that yet need to be answered are what the carbon uptake kinetics of the oceans will be in the future and how the increase in oceanic carbon inventory will affect its ecosystems and their services. This requires comprehensive investigations, including high-quality ocean carbon measurements on different spatial and temporal scales, the management of data in sophisticated databases, the application of Earth system models to provide future projections for given emission scenarios as well as a global synthesis and outreach to policy makers. In this paper, the current understanding of the ocean as an important carbon sink is reviewed with respect to these topics. Emphasis is placed on the complex interplay of different physical, chemical and biological processes that yield both positive and negative air–sea flux values for natural and anthropogenic CO2 as well as on increased CO2 (uptake) as the regulating force of the radiative warming of the atmosphere and the gradual acidification of the oceans. Major future ocean carbon challenges in the fields of ocean observations, modelling and process research as well as the relevance of other biogeochemical cycles and greenhouse gases are discussed
The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake
In recent years, the growing number of available climate models and future scenarios has led to emergent constraints becoming a popular tool to constrain uncertain future projections. However, when emergent constraints are applied over large areas, it is unclear (i) if the well-performing models simulate the correct dynamics within the considered area, (ii) which key dynamical features the emerging constraint is stemming from, and (iii) if the observational uncertainty is low enough to allow for a considerable reduction in the projection uncertainties.
We therefore propose to regionally optimize emergent relationships with the twofold goal to (a) identify key model dynamics associated with the emergent constraint and model inconsistencies around them and (b) provide key areas where a narrow observational uncertainty is crucial for constraining future projections.
Here, we consider two previously established emergent constraints of the future carbon uptake in the North Atlantic (Goris et al., 2018). For the regional optimization, we use a genetic algorithm and pre-define a suite of shapes and size ranges for the desired regions. Independent of pre-defined shape and size range, the genetic algorithm persistently identifies the Gulf Stream region centred around 30∘ N as optimal as well as the region associated with broad interior southward volume transport centred around 26∘ N. Close to and within our optimal regions, observational data of volume transport are available from the RAPID array with relative low observational uncertainty. Yet, our regionally optimized emergent constraints show that additional measures of specific biogeochemical variables along the array will fundamentally improve our estimates of the future carbon uptake in the North Atlantic. Moreover, our regionally optimized emergent constraints demonstrate that models that perform well for the upper-ocean volume transport and related key biogeochemical properties do not necessarily reproduce the interior-ocean volume transport well, leading to inconsistent gradients of key biogeochemical properties. This hampers the applicability of emergent constraints over large areas and highlights the need to additionally evaluate spatial model features.</p
Quantitative systematic review of the effects of non‐pharmacological interventions on reducing apathy in persons with dementia
AimTo review the quantitative evidence concerning the effects of non‐pharmacological interventions on reducing apathy in persons with dementia.BackgroundApathy, a prevalent behavioural symptom among persons with Alzheimer Disease, is defined as a disorder of motivation with deficits in behavioural, emotional and cognitive domains and is associated with serious social and physical obstacles. Non‐pharmacological interventions show promise as symptom control modalities among persons with dementia.DesignQuantitative systematic review.Data sourcesCINAHL, PubMed, PSYCHinfo and Cochrane Trials databases were searched for published English language research inclusive through December 2014, with no early year limiters set.Review methodsComprehensive searches yielded 16 international randomized controlled trials or quasi‐experimental studies based on inclusion criteria and a rigorous quality appraisal process.ResultsA narrative summary analysis revealed that non‐pharmacological interventions for apathy varied substantially and lacked specificity, conceptual clarity and were methodologically heterogeneous. Select interventions demonstrated effectiveness, but lacked systematic long‐term follow‐up. Limitations include publication bias and lack of a meta‐analytic approach due to the methodological heterogeneity of included studies.ConclusionStudy results demonstrate promise for the use of non‐pharmacological interventions, particularly music‐based interventions, in reducing apathy levels in individuals with dementia. Intervening to reduce apathy may have a positive clinical impact and healthcare providers should be encouraged to incorporate positive sources of interest and intellectual stimulation into care. However, future research is needed to examine the aetiologic mechanism and predictors of apathy, to improve evidence‐based interventions and specificity and to optimize dosage and timing of non‐pharmacological interventions across the disease trajectory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134246/1/jan13026_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134246/2/jan13026.pd
Inhibition of Salmonella Typhimurium by medium chain fatty acids in an in vitro simulation of the porcine caecum
To lower the contamination of pork meat with Salmonella, feed additives such as medium chain fatty acids (MCFA\u27s) can be applied at the primary production level. An in vitro continuous culture system, simulating the porcine caecum, was developed for investigating the effect of MCFAs on the pig intestinal microbial community. The system was monitored by plating on selective media, 16S rDNA PCR denaturing gradient gel electrophoresis (PCR-DGGE) and HPLC analysis of fermentation products. In a simulation of the porcine caecum without MCFA treatment, with Salmonella Typhimurium added after stabilization of the microbial community, the strain could establish itself at a stable population size of about 5 log cfu/ml. The effect of selected MCFAs was observed from all monitored parameters and depended on chain length and concentration applied. At a dose of 15 mM, caproate and caprinate did not show any pronounced effect, while a clear Salmonella inhibiting effect (3 log units reduction) was found for caprylate. Doubling the caprylate dose did not result in enhanced Salmonella inhibition
Reversible thrombocytopenia during hibernation originates from storage and release of platelets in liver sinusoids
Immobility is a risk factor for thrombosis due to low blood flow, which may result in activation of the coagulation system, recruitment of platelets and clot formation. Nevertheless, hibernating animals-who endure lengthy periods of immobility-do not show signs of thrombosis throughout or after hibernation. One of the adaptations of hemostasis in hibernators consists of a rapidly reversible reduction of the number of circulating platelets during torpor, i.e., the hibernation phase with reduction of metabolic rate, low blood flow and immobility. It is unknown whether these platelet dynamics in hibernating hamsters originate from storage and release, as suggested for ground squirrel, or from breakdown and de novo synthesis. A reduction in detaching forces due to low blood flow can induce reversible adhesion of platelets to the vessel wall, which is called margination. Here, we hypothesized that storage-and-release by margination to the vessel wall induces reversible thrombocytopenia in torpor. Therefore, we transfused labeled platelets in hibernating Syrian hamster (Mesocricetus auratus) and platelets were analyzed using flow cytometry and electron microscopy. The half-life of labeled platelets was extended from 20 to 30 h in hibernating animals compared to non-hibernating control hamsters. More than 90% of labeled platelets were cleared from the circulation during torpor, followed by emergence during arousal which supports storage-and-release to govern thrombocytopenia in torpor. Furthermore, the low number of immature platelets, plasma level of interleukin-1α and normal numbers of megakaryocytes in bone marrow make platelet synthesis or megakaryocyte rupture via interleukin-1α unlikely to account for the recovery of platelet counts upon arousal. Finally, using large-scale electron microscopy we revealed platelets to accumulate in liver sinusoids, but not in spleen or lung, during torpor. These results thus demonstrate that platelet dynamics in hibernation are caused by storage and release of platelets, most likely by margination to the vessel wall in liver sinusoids. Translating the molecular mechanisms that govern platelet retention in the liver, may be of major relevance for hemostatic management in (accidental) hypothermia and for the development of novel anti-thrombotic strategies
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His(229) from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His(229) was observed to lie close to a buried glutamic acid (Glu(73)), which is conserved in oxygen-tolerant hydrogenases. His(229) and Glu(73) of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His(229) or Glu(73) with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His(229) has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu(73)could play a supporting role in fine-tuning the chemistry of His(229) to enable this function
An Assessment of CO2 Storage and Sea‐Air Fluxes for the Atlantic Ocean and Mediterranean Sea Between 1985 and 2018
As part of the second phase of the Regional Carbon Cycle Assessment and Processes project (RECCAP2), we present an assessment of the carbon cycle of the Atlantic Ocean, including the Mediterranean Sea, between 1985 and 2018 using global ocean biogeochemical models (GOBMs) and estimates based on surface ocean carbon dioxide (CO2) partial pressure (pCO2 products) and ocean interior dissolved inorganic carbon observations. Estimates of the basin-wide long-term mean net annual CO2 uptake based on GOBMs and pCO2 products are in reasonable agreement (−0.47 ± 0.15 PgC yr−1 and −0.36 ± 0.06 PgC yr−1, respectively), with the higher uptake in the GOBM-based estimates likely being a consequence of a deficit in the representation of natural outgassing of land derived carbon. In the GOBMs, the CO2 uptake increases with time at rates close to what one would expect from the atmospheric CO2 increase, but pCO2 products estimate a rate twice as fast. The largest disagreement in the CO2 flux between GOBMs and pCO2 products is found north of 50°N, coinciding with the largest disagreement in the seasonal cycle and interannual variability. The mean accumulation rate of anthropogenic CO2 (Cant) over 1994–2007 in the Atlantic Ocean is 0.52 ± 0.11 PgC yr−1 according to the GOBMs, 28% ± 20% lower than that derived from observations. Around 70% of this Cant is taken up from the atmosphere, while the remainder is imported from the Southern Ocean through lateral transport
- …