36 research outputs found

    Exploring the seismic expression of fault zones in 3D seismic volumes

    Get PDF
    Acknowledgments The seismic interpretation and image processing has been run in the SeisLab facilty at the University of Aberdeen (sponsored by BG, BP and Chevron) Seismic imaging analysis was performed in GeoTeric (ffA), and Mathematica (Wolfram research). Interpretation of seismic amplitudes was performed Petrel 2014 (Schlumberger). We thank Gaynor Paton (Geoteric) for in depth discussion on the facies analysis methodology and significant suggestions to improve the current paper. We thank the New Zealand government (Petroleum and Minerals ministry) and CGG for sharing the seismic dataset utilized in this research paper. Seismic images used here are available through the Virtual Seismic Atlas (www.seismicatlas.org). Nestor Cardozo and an anonymous reviewer are thanked for their constructive comments and suggestions that strongly improved the quality and organization of this paper.Peer reviewedPostprin

    Controls on Holocene denudation rates in mountainous environments under Mediterranean climate

    No full text
    International audienceThe Mediterranean domain is characterized by a specific climate resulting from the close interplay between atmospheric and marine processes and strongly differentiated regional topographies. Corsica Island, a mountainous area located in the western part of the Mediterranean Sea is particularly suitable to quantify regional denudation rates in the framework of a source-to-sink approach. Indeed, fluvial sedimentation in East-Corsica margin is almost exclusively limited to its alluvial plain and offshore domain and its basement is mainly constituted of quartz-rich crystalline rocks allowing cosmogenic nuclide Be-10 measurements. In this paper, Holocene denudation rates of catchments from the eastern part of the island of Corsica are quantified relying on in situ produced Be-10 concentrations in stream sediments and interpreted in an approach including quantitative geomorphology, rock strength measurement (with a Schmidt Hammer) and vegetation cover distribution. Calculated denudation rates range from 15 to 95 mm ka(-1). When compared with rates from similar geomorphic domains experiencing a different climate setting, such as the foreland of the northern European Alps, they appear quite low and temporally stable. At the first order, they better correlate with rock strength and vegetation cover than with morphometric indexes. Spatial distribution of the vegetation is controlled by morpho-climatic parameters including sun exposure and the direction of the main wet wind, so-called Libecciu'. This distribution, as well as the basement rock strength seems to play a significant role in the denudation distribution. We thus suggest that the landscape reached a geomorphic steady-state due to the specific Mediterranean climate and that Holocene denudation rates are mainly sustained by weathering processes, through the amount of regolith formation, rather than being transport-limited. Al/K measurements used as a proxy to infer present-day catchment-wide chemical weathering patterns might support this assumption

    A global survey of radiogenic strontium isotopes in river sediments

    No full text
    Radiogenic strontium isotopes are routinely used in provenance studies, but their application to sediments is often complicated by various grain size and weathering effects, which can influence measured 87Sr/86Sr ratios. Here, we report Sr isotopic data for a large number of sediment samples (n = 61) from the world's largest rivers and other river catchments draining particular geological and climatic settings; using both clay-rich (20 °C, intense feldspar weathering leads to the preferential incorporation of unradiogenic Sr into secondary clay minerals; a process which results in negative Δ87Sr/86Sr Clay-Silt values. In addition to climate forcing, the degree of size-dependent Sr isotope decoupling is also shown to be dependent on the type of weathering regime in watersheds, being more pronounced in low-elevation environments ( 4000 m) dominated by kinetically-limited weathering regimes. While further studies will be required to test the validity of these conclusions at the local scale of weathering profiles, these findings suggest that combined Sr isotopic analyses of separate size fractions could be used as a new weathering proxy in sediment records, ideally complementing the conventional use of radiogenic Sr isotopes as provenance tracers. Finally, our results are also used to re-assess the mean Sr flux and 87Sr/86Sr composition of the suspended sediment exported to the ocean yearly, yielding a global flux-weighted average of 0.7160, identical to that proposed earlier in the seminal study of Goldstein and Jacobsen (1988)

    Development of fast reactor power station design in France The RAPIDE 1500 project

    No full text
    Translated from French (Int. Conf. Fast Breeder Reactors, Lyon (FR), 22-26 Jul 1985)Available from British Library Document Supply Centre- DSC:9091.9F(RISLEY-Trans--5180)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Rare earth element and neodymium isotope tracing of sedimentary rock weathering

    No full text
    © 2020 Elsevier B.V. Chemical weathering plays an important role in sequestering atmospheric CO2, but its potential influence on global climate over geological timescales remains debated. To some extent, this uncertainty arises from the difficulty in separating the respective contribution of sedimentary and crystalline silicate rocks to past weathering rates in the geological record; two types of rocks having presumably different impact on the long-term carbon cycle. In this study, we investigate the use of rare earth element (REE) and neodymium isotopes (ΔNd) in leached iron oxide fractions of river sediments for tracing the origin of weathered rocks on continents. A new index, called ‘concavity index’ (CI), is defined for measuring the degree of mid-REE enrichment in geological samples, which enables the determination of the source of iron oxides in sediments, such as seawater-derived Fe-oxyhydroxide phases, ancient marine Fe oxides derived from the erosion of sedimentary rocks, and recent secondary oxides formed in soils via alteration of crystalline silicate rocks or pyrite oxidation. Using this index, we demonstrate that the ΔNd difference between paired Fe-oxide and detrital fractions in river sediments (defined here as ∆ΔNd Feox-Det) directly reflects the relative contribution of sedimentary versus crystalline silicate rocks during weathering. While rivers draining old cratons and volcanic provinces display near-zero ∆ΔNd Feox-Det values indicative of dominant silicate weathering (0.5 ± 1.1; n = 30), multi-lithological catchments hosting sedimentary formations yield systematically higher values (2.7 ± 1.2; n = 44), showing that sedimentary rock weathering can be traced by the occurrence of riverine Fe oxides having more radiogenic Nd isotope signatures compared to detrital fractions. This assumption is reinforced by the evidence that calculated ∆ΔNd Feox-Det values agree well with previous estimates for carbonate and silicate weathering rates in large river basins. Examining the influence of climate and tectonics on measured Nd isotopic compositions, we find that ∆ΔNd Feox-Det is strongly dependent on temperature in lowlands, following an Arrhenius-like relationship that reflects enhanced alteration of silicate rocks and formation of secondary Fe oxides in warmer climates. In contrast, in high-elevation catchments, ∆ΔNd Feox-Det defines striking correlation with maximum basin elevation, which we also interpret as reflecting the intensification of silicate weathering and associated Fe oxide formation as elevation decreases, due to the combined effects of thicker soils and warmer temperature. Overall, our new findings are consistent with previous assertions that the alteration of sedimentary rocks prevails in high-elevation environments, while silicate weathering dominates in floodplains. This novel approach combining REE and Nd isotopes opens new perspectives for disentangling the weathering signals of sedimentary and crystalline silicate rocks in the geologic record, which could be used in future studies to reassess the causal relationships between mountain uplift, erosion and climate throughout Earth's history.NER

    Rare earth elements and neodymium isotopes in world river sediments revisited

    No full text
    International audienceOver the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with Delta epsilon Nd(clay-silt) < vertical bar 1 vertical bar. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts is probably best explained by preferential alteration of feldspars and/or accessory mineral phases. Importantly, this finding clearly indicates that silicate weathering can lead to decoupling of REE between different grain-size fractions, with implications for sediment provenance studies. Finally, we propose a set of values for a World River Average Clay (WRAC) and Average Silt (WRAS), which provide new estimates for the average composition of the weathered and eroded upper continental crust, respectively, and could be used for future comparison purposes. (C) 2015 Elsevier Ltd. All rights reserved
    corecore