178 research outputs found

    Purified and specific cytoplasmic pollen extract: a non-hormonal alternative for the treatment of menopausal symptoms

    Get PDF
    Research into non-hormonal, alternative therapies is necessary for women for whom menopausal hormone therapy is contraindicated or for women who do not wish to take hormones. This review focuses on one such non-hormonal option, namely, purified and specific cytoplasmic pollen extract, or PureCyTonin (R). This extract has been evaluated in several preclinical and clinical studies, where it demonstrated its value as a safe and non-estrogenic alternative for menopause. This review presents the beneficial effects of PureCyTonin (R) in the treatment of menopausal symptoms (e.g. hot flushes) in healthy women, as well as in premenstrual syndrome. We discuss the mechanism of action of PureCyTonin (R), an SSRI-'like' therapy. The lack of estrogenic effect demonstrated in preclinical studies suggests that PureCyTonin (R) may also be a suitable option for the management of menopausal symptoms in women with breast cancer

    Metabolic Profiling of a Mapping Population Exposes New Insights in the Regulation of Seed Metabolism and Seed, Fruit, and Plant Relations

    Get PDF
    To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping

    Пролиферация и апоптоз лимфоцитов в ответ на стимуляцию боррелиозным антигеном у больных иксодовым клещевым боррелиозом

    Get PDF
    The object of this work was to study the correlation between the lymphocyte proliferation and apoptosis in the cultures stimulated by specific inactivated Borrelia garinii antigen and the different clinical outcomes in Lyme borreliosis patients. It was found that borrelia antigen stimulation of the cultures obtained from chronic patients induced T helper type 1-like response as well as depression in lymphocyte apoptosis, which may provide the basis of persistent activated T cell immune response and chronic inflammatory in Lyme borreliosis.Цель настоящей работы заключалась в определении взаимосвязи между особенностями пролиферации и апоптоза клеток в культурах лимфоцитов, стимулированных специфическим антигеном B. garinii, и развитием различных клинических исходов у больных иксодовым клещевым боррелиозом (ИКБ). Установлено, что стимуляция боррелиозным антигеном культур, полученных от больных хроническим ИКБ, приводит к развитию in vitro Т-хелперов типа 1 при одновременном подавлении апоптоза реактивных клеток, что может лежать в основе формирования персистентно активированного Т-клеточного иммунного ответа и хронического воспалительного процесса при этом заболевании

    Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa)

    Get PDF
    RNA-seq has been used to perform global expression analysis of the achene and the receptacle at four stages of fruit ripening, and of the roots and leaves of strawberry (Fragaria × ananassa). About 967 million reads and 191 Gb of sequence were produced, using Illumina sequencing. Mapping the reads in the related genome of the wild diploid Fragaria vesca revealed differences between the achene and receptacle development program, and reinforced the role played by ethylene in the ripening receptacle. For the strawberry transcriptome assembly, a de novo strategy was followed, generating separate assemblies for each of the ten tissues and stages sampled. The Trinity program was used for these assemblies, resulting in over 1.4 M isoforms. Filtering by a threshold of 0.3 FPKM, and doing Blastx (E-value < 1 e-30) against the UniProt database of plants reduced the number to 472,476 isoforms. Their assembly with the MIRA program (90% homology) resulted in 26,087 contigs. From these, 91.34 percent showed high homology to Fragaria vesca genes and 87.30 percent Fragaria iinumae (BlastN E-value < 1 e-100). Mapping back the reads on the MIRA contigs identified polymorphisms at nucleotide level, using FREEBAYES, as well as estimate their relative abundance in each sample

    Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

    Get PDF
    BACKGROUND: ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. METHODOLOGY/PRINCIPAL FINDINGS: FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. CONCLUSIONS: These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology
    corecore