2,559 research outputs found

    Design and Experimental Validation of an Explicit MPC Controller for Regulating Temperature in PEM Fuel Cell Systems

    Get PDF
    This paper proposes a temperature controller for PEM fuel cell systems with an air blower as thermal circuit. The objective of this controller is to maintain the stack temperature over a given set-point which is obtained from the results of a real-time optimization algorithm with the goal of minimizing the stack degradation and maximizing the global efficiency. An Explicit MPC is proposed to deal with this control problem which presents delays, the critical sampling time, constraints and disturbances. The simulation results show good performance of the controller which accurately tracks the temperature reference over the overall range of operating conditions. Furthermore, the controller is implemented in real-time on a PEM fuel cell test-bench which is installed in the Fuel Cell Laboratory at the University of Seville

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated

    Smooth Inequalities and Equilibrium Inefficiency in Scheduling Games

    Full text link
    We study coordination mechanisms for Scheduling Games (with unrelated machines). In these games, each job represents a player, who needs to choose a machine for its execution, and intends to complete earliest possible. Our goal is to design scheduling policies that always admit a pure Nash equilibrium and guarantee a small price of anarchy for the l_k-norm social cost --- the objective balances overall quality of service and fairness. We consider policies with different amount of knowledge about jobs: non-clairvoyant, strongly-local and local. The analysis relies on the smooth argument together with adequate inequalities, called smooth inequalities. With this unified framework, we are able to prove the following results. First, we study the inefficiency in l_k-norm social costs of a strongly-local policy SPT and a non-clairvoyant policy EQUI. We show that the price of anarchy of policy SPT is O(k). We also prove a lower bound of Omega(k/log k) for all deterministic, non-preemptive, strongly-local and non-waiting policies (non-waiting policies produce schedules without idle times). These results ensure that SPT is close to optimal with respect to the class of l_k-norm social costs. Moreover, we prove that the non-clairvoyant policy EQUI has price of anarchy O(2^k). Second, we consider the makespan (l_infty-norm) social cost by making connection within the l_k-norm functions. We revisit some local policies and provide simpler, unified proofs from the framework's point of view. With the highlight of the approach, we derive a local policy Balance. This policy guarantees a price of anarchy of O(log m), which makes it the currently best known policy among the anonymous local policies that always admit a pure Nash equilibrium.Comment: 25 pages, 1 figur

    Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms

    Get PDF
    We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou's network. We improve upon the value 4/3 by means of Coordination Mechanisms. We increase the latency functions of the edges in the network, i.e., if e(x)\ell_e(x) is the latency function of an edge ee, we replace it by ^e(x)\hat{\ell}_e(x) with e(x)^e(x)\ell_e(x) \le \hat{\ell}_e(x) for all xx. Then an adversary fixes a demand rate as input. The engineered Price of Anarchy of the mechanism is defined as the worst-case ratio of the Nash social cost in the modified network over the optimal social cost in the original network. Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified network for rate rr and \Copt(r) denotes the cost of the optimal flow in the original network for the same rate then [\ePoA = \max_{r \ge 0} \frac{\CM(r)}{\Copt(r)}.] We first exhibit a simple coordination mechanism that achieves for any network of parallel links an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25. Then, for the case of two parallel links, we describe an optimal mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201

    Towards More Practical Linear Programming-based Techniques for Algorithmic Mechanism Design

    Get PDF
    R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) introduced a general method for obtaining truthful-in-expectation mechanisms from linear programming based approximation algorithms. Due to the use of the Ellipsoid method, a direct implementation of the method is unlikely to be efficient in practice. We propose to use the much simpler and usually faster multiplicative weights update method instead. The simplification comes at the cost of slightly weaker approximation and truthfulness guarantees

    High-Temperature Activated AB2 Nanopowders for Metal Hydride Hydrogen Compression

    Full text link
    A reliable process for compressing hydrogen and for removing all contaminants is that of the metal hydride thermal compression. The use of metal hydride technology in hydrogen compression applications though, requires thorough structural characterization of the alloys and investigation of their sorption properties. The samples have been synthesized by induction - levitation melting and characterized by Rietveld analysis of the X-Ray diffraction (XRD) patterns. Volumetric PCI (Pressure-Composition Isotherm) measurements have been conducted at 20, 60 and 90 oC, in order to investigate the maximum pressure that can be reached from the selected alloys using water of 90oC. Experimental evidence shows that the maximum hydrogen uptake is low since all the alloys are consisted of Laves phases, but it is of minor importance if they have fast kinetics, given a constant volumetric hydrogen flow. Hysteresis is almost absent while all the alloys release nearly all the absorbed hydrogen during desorption. Due to hardware restrictions, the maximum hydrogen pressure for the measurements was limited at 100 bars. Practically, the maximum pressure that can be reached from the last alloy is more than 150 bars.Comment: 9 figures. arXiv admin note: text overlap with arXiv:1207.354

    Simulations of the Poynting--Robertson Cosmic Battery in Resistive Accretion Disks

    Full text link
    We describe the results of numerical "2.5--dimensional" MHD simulations of an initially unmagnetized disk model orbiting a central point--mass and responding to the continual generation of poloidal magnetic field due to a secular source that emulates the Poynting--Robertson (PR) drag on electrons in the vicinity of a luminous stellar or compact accreting object. The fluid in the disk and in the surrounding hotter atmosphere has finite electrical conductivity and allows for the magnetic field to diffuse freely out of the areas where it is generated, while at the same time, the differential rotation of the disk twists the poloidal field and quickly induces a substantial toroidal--field component. The secular PR term has dual purpose in these simulations as the source of the magnetic field and the trigger of a magnetorotational instability (MRI) in the disk. The MRI is especially mild and does not destroy the disk because a small amount of resistivity dampens the instability efficiently. In simulations with moderate resistivities (diffusion timescales up to \sim16 local dynamical times) and after \sim100 orbits, the MRI has managed to transfer outward substantial amounts of angular momentum and the inner edge of the disk, along with azimuthal magnetic flux, has flowed toward the central point--mass where a new, magnetized, nuclear disk has formed. The toroidal field in this nuclear disk is amplified by differential rotation and it cannot be contained; when it approaches equipartition, it unwinds vertically and produces episodic jet--like outflows. The poloidal field in the inner region cannot diffuse back out if the characteristic diffusion time is of the order of or larger than the dynamical time; it continues to grow linearly in time undisturbed and without saturation, as the outer sections of many poloidal loops are being drawn radially outward.Comment: 27 pages, 55 figure

    Designing cost-sharing methods for Bayesian games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    Olanzapine-associated neuroleptic malignant syndrome: Is there an overlap with the serotonin syndrome?

    Get PDF
    BACKGROUND: The neuroleptic malignant syndrome is a rare but serious condition mainly associated with antipsychotic medication. There are controversies as to whether "classical" forms of neuroleptic malignant syndrome can occur in patients given atypical antipsychotics. The serotonin syndrome is caused by drug-induced excess of intrasynaptic 5-hydroxytryptamine. The possible relationship between neuroleptic malignant syndrome and serotonin syndrome is at present in the focus of scientific interest. METHODS: This retrospective phenomenological study aims to examine the seventeen reported olanzapine – induced neuroleptic malignant syndrome cases under the light of possible overlap between neuroleptic malignant syndrome and serotonin syndrome clinical features. RESULTS: The serotonin syndrome clinical features most often reported in cases initially diagnosed as neuroleptic malignant syndrome are: fever (82%), mental status changes (82%) and diaphoresis (47%). Three out of the ten classical serotonin syndrome clinical features were concurrently observed in eleven (65%) patients and four clinical features were observed in seven (41%) patients. CONCLUSION: The results of this study show that the clinical symptoms of olanzapine-induced neuroleptic malignant syndrome and serotonin syndrome are overlapping suggesting similarities in underlying pathophysiological mechanisms
    corecore