
ar
X

iv
:1

40
8.

15
77

v1
 [

cs
.G

T
]

 7
 A

ug
 2

01
4

Towards More Practical Linear

Programming-based Techniques for Algorithmic

Mechanism Design

Khaled Elbassioni1, Kurt Mehlhorn2, and Fahimeh Ramezani2

1 Masdar Institute of Science and Technology, Abu Dhabi, UAE
2 Max Planck Institute for Informatics; Campus E1 4, 66123, Saarbrucken, Germany
kelbassioni@masdar.ac.ae,mehlhorn@mpi-inf.mpg.de, ramezani@mpi-inf.mpg.de

Abstract. R. Lavy and C. Swamy (FOCS 2005, J. ACM 2011) intro-
duced a general method for obtaining truthful-in-expectation mecha-
nisms from linear programming based approximation algorithms. Due to
the use of the Ellipsoid method, a direct implementation of the method is
unlikely to be efficient in practice. We propose to use the much simpler
and usually faster multiplicative weights update method instead. The
simplification comes at the cost of slightly weaker approximation and
truthfulness guarantees.

1 Introduction

Algorithmic mechanism design studies optimization problems in which part of
the input is not directly available to the algorithm; instead, this data is collected
from self-interested agents who can manipulate the algorithm by mis-reporting
their parts of the input, if that would improve their own objective functions.
Algorithmic mechanism design quests for polynomial-time algorithms that (ap-
proximately) optimize a global objective function (usually called social welfare),
subject to the strategic requirement that, with the assumption that agents have
a prefect knowledge of the algorithm, their best strategy is to truthfully report
their part of the input. Such algorithms are called truthful mechanisms. The cel-
ebrated VCG mechanism (see, e.g., [18]) achieves truthfulness and social-welfare
optimization, but is, in general, not computationally efficient, since it may re-
quire solving an NP-hard optimization problem.

It is clearly desirable to have general constructions (frequently called black-
box reductions) of the form: if an optimization problem admits an α-approximation
algorithm, then it admits an α′-approximation truthful mechanism, where α′ =
f(α). We concentrate here on the black-box reduction of Lavi and Swamy
([16,17]) that turns a linear programming based approximation algorithm for
the social welfare problem into a randomized mechanism that is truthful in ex-
pectation, i.e., reporting the truth maximizes the expected utility of an agent,
and mention other work on black-box reductions only in passing [5,2,8]. The
LS-reduction is powerful (see [16,17,6,13] for applications), but unlikely to be
efficient in practice because of its use of the Ellipsoid method. We show how

http://arxiv.org/abs/1408.1577v1

to use the multiplicative weigths update method instead. This results in simpler
algorithms at the cost of somewhat weaker approximation and truthfulness guar-
antees. We consider our paper an engineering paper.

We next give a high-level review of the LS-reduction. It is useful to read
the following lines with a concrete example in mind.3 The LS-reduction assumes
access to an α-approximation algorithm for maximizing the social welfare over
integral points x in a packing polytope Q and consists of three main steps:
1. Solve the LP-relaxation, which is obtained by dropping the integrality con-

straints on x; call the obtained optimum (fractional) solution x∗;
2. decompose α · x∗ as a convex combination of integral solutions in Q;
3. given the decomposition in step 2, pick an integral solution with probabil-

ity equal to the corresponding convex combination multiplier; coupled with
VCG-type payments, this guarantees truthfulness-in-expectation and an ap-
proximation factor of α.

With respect to practical applicability, steps 1 and 2 are the two major bot-
tlenecks. Step 1 requires solving a linear program; an exact solution requires
the use of the Ellipsoid method (see e.g. [12]) if the dimension is exponential.
Furthermore, the only method known to perform the decomposition in Step 2 is
through the Ellipsoid method.

Over the past 15 years, simple and fast methods [4,11,10,14,15,19,20] have
been developed for solving packing linear (or even convex) programs within an
arbitrarily small error guarantee ǫ. These methods are based on the multiplica-
tive weights update (MWU) method [1], in which a very simple update rule is
repeatedly performed until a near-optimal solution is obtained. A natural ques-
tion to ask is whether these methods can be used in the LS-reduction instead of
the Ellipsoid method. There are two technical hurdles.

First, only an exact solution to the LP guarantees truthfulness of the re-
sulting mechanism. We resort to (1 − ǫ)-truthfulness-in-expectation [9]: each
player maximizes her expected utility within a factor of (1− ǫ) by reporting her
valuation truthfully. A black-box reduction was given in [9] to obtain an (1−ǫ0)-
truthfulness in expectation mechanism from a randomized (1−ǫ)-approximation
algorithm, where n is the number of players and ǫ := Θ(ǫ0/n

9). We use similar
ideas but improve this bound to ǫ := Θ(ǫ50/n

4).
Second, it is not known how to use these techniques to get an exact decom-

position of the fractional solution obtained in step 1. We show that a (slight)

3 In the combinatorial auction problem, there is a set of items to be sold to a set
of agents. The (reported) value of a set S of items to the i-th agent is vi(S) with
vi(∅) = 0 and vi(S) ≤ vi(T) whenever S ⊆ T . Let xi,S be a 0-1 variable indicating
that set S is given to agent i. Then

∑

S
xi,S ≤ 1 states that at most one set can be

given to i, and
∑

i

∑

S;j∈S
xi,S ≤ 1 for every item j states that any item can be given

away only once. The social welfare is
∑

i,S
vi(S)xi,S. For the moment, we dodge the

issue of how the agents reveal their valuations in a compact form, i.e., polynomially
in the number of items. An important special case are single-minded agents, i.e., for
every i, there is a set Si such that vi(T) = v(Si) if Si ⊆ T and vi(T) = 0 otherwise.
Replacing the contraint xi,S ∈ {0, 1} by 0 ≤ xi,S ≤ 1, results in an LP of the packing
type. Let Q be the feasible region of the LP.

2

variation of the approach by Garg and Könemann [10] can be used to obtain a
convex combination that dominates α · x∗. Then we use the packing property of
the polytope to convert this to an exact equality.

Theorem 1 (Informal). Consider a combinatorial optimization problem whose
LP relaxation can be described by a packing polytope on d variables, m con-
straints, and n players, and given by a demand oracle. Assume that there is an
α-approximation algorithm for the problem that outputs a solution within a fac-
tor of α times the optimum fractional LP solution. Then, for any ǫ ∈ (0, 1), there
is a (1 − O(ǫ))-truthful-in-expectation mechanism M achieving a social welfare

within a factor of (1 − O(ǫ))α of the optimum. The mechanism makes Õ(n
9m
ǫ10)

calls to the oracle and Õ(mǫ2) calls to the approximation algorithm.

Two remarks are in order. First, while the running time of the mechanism in
Theorem 1 is high in terms of the number of players, it is almost linear in terms
of the number constraints. Second, the factor n9 is based on the assumption
that the currently best algorithm for approximating, within a factor of 1 − ǫ0,
the fractional packing LP problem (given by a demand oracle), runs in time

O(m logm
ǫ2). As mentioned above, our mechanism requires setting ǫ to Θ(

ǫ50
n4).

Thus, any improvement on the efficiency of the fractional packing algorithm will
translate to an improvement on the running time given in Theorem 1.

It is worth mentioning that MWU methods have been used recently for auc-
tion design in the bayesian settings, yielding optimal mechanisms for multi-unit
auctions and some of their extensions [3].

2 Notation and preliminaries

There are n players. Ω⊆R
d
≥0 is the set of outcomes; it contains 0. We have

d = d1+. . .+dn and hence any outcome x can be written as x = (x1, . . . , xn) with
xi ∈ R

di . The valuations vi of player i are linear, monotone, and homogenous
functions depending only on xi, i.e., vi(x) = V T

i xi, where Vi ∈ R
di

≥0 is a non-
negative vector. We use Vi to denote the possible valuations for i and use V :=
V1×. . .×Vn. Let v(x) :=

∑

i vi(x) =
∑

i V
T
i xi = V Tx, where V = (V1, . . . , Vn) ∈

Rd. The social welfare maximization problem is to find z∗Ω(v) = maxx∈Ω v(x).
For a vector x = (x1, . . . , xk) and i ∈ [k] we use x−i to denote (x1, . . . , xi−1,

xi+1, . . . , xk). A randomized mechanism M = (A,P) for (Ω,V) is defined by an
allocation rule A : V → D(Ω) and a payment rule P : V → D(Rn

≥0), where D(S)
denotes the set of probability distributions over set S. The utility of player i,
under the mechanism, when it receives the vector of bids v := (v1 . . . , vn) ∈ V ,
is the random variable Ui(v) = v̄i(x(v))− pi(v), where x(v) ∼ A(v), and p(v) =
(p1(v), . . . , pn(v)) ∼ P(v); here v̄i denotes the true valuation of player i.

For β ≥ 0, a randomized mechanism (for (Ω,V)) is said to be β-absolutely
(resp., relatively) truthful in expectation, denoted by β-abs-TIE (resp., β-rel-TIE)
if for all i and all v̄i, vi ∈ Vi, and v−i ∈ V−i, it guarantees that E[Ui(v̄i, v−i)] ≥
E[Ui(vi, v−i)] − β (resp., E[Ui(v̄i, v−i)] ≥ β · E[Ui(vi, v−i)]), when the true and

3

reported valuations of player i are v̄i and vi, respectively, and where the expec-
tation is taken over the random choices made by the mechanism: E[Ui(v)] =
Ex,p∼M(v)[Ui(v)] := Ex∼A(v)[v̄i(x)]− Ep∼P(v)[pi]. In words: the expected utility
of any player is maximized within an absolute (resp., relative) error of β, when
he/she reports the true valuation. We will drop β when it is 0 (resp., when it is
1). The mechanism is individually rational (with probability q) if the utility of
a truth-telling bidder under the mechanism is non-negative (with probability at
least q). The mechanism is said to have no positive transfer if all payments are
non-negative.

For a constant α ∈ (0, 1], a randomized mechanism (A,P) is said to be α-
socially efficient if for any v ∈ V it guarantees that the expected social welfare
obtained under the mechanism is at least an α-fraction of the optimum social
welfare, i.e., Ex∼A(v)[v(x)] ≥ α · z∗Ω(v). An α-socially efficient β-abs-TIE (resp.,
β-rel-TIE) will be called (α, β)-abs-TIE (resp., (α, β)-rel-TIE). When the specific
values of α and β are irrelevant, we talk about an almost-TIE.

Let R ⊆ D(Ω) be a compact subset of probability distributions over Ω.
For β ≥ 0, a randomized allocation rule A : V → R (for (Ω,V)) is said to
be β-absolutely (resp., β-relatively) maximal in distribution range [7,8], denoted
β-abs-MIDR (resp., β-rel-MIDR) with respect to R, if it guarantees that for
all v ∈ V , Ex∼A(v)[v(x)] ≥ maxA′∈R Ex∼A′ [v(x)] − β (resp., Ex∼A(v)[v(x)] ≥
β · maxA′∈R Ex∼A′ [v(x)]), i.e., given the vector of reported valuations v, the
mechanism always outputs a distribution in R maximizing, within an absolute
(resp., relative) error of β, the expected social welfare, among all other distribu-
tions in R. A randomized mechanism (A,P) is said to be β-abs-MIDR (resp.,
β-rel-MIDR) if its allocation rule A is β-abs-MIDR (resp., β-rel-MIDR) . We will
drop β when it is 0 (resp., 1). An allocation rule is an (α, β)-abs-MIDR (resp.,
(α, β)-rel-MIDR) w.r.t. range R, if it is α-socially efficient, β-abs-MIDR (resp.,
β-rel-MIDR).

We are mainly interested in the case that the set of outcomes Ω is equal to
the feasible (integral) solutions of a packing polytope

Q := {x ∈ R
d| Ax ≤ b, 0 ≤ x ≤ u}, (1)

where A ∈ R
m×d
≥0 , b ∈ R

m
>0, and u ∈ R

d
>0. Packing polytopes have the packing

property: x ∈ Q and y ≤ x implies y ∈ Q. We denote by QI := Q∩ Z
d
≥0 the set

of integral points in Q. When the dimension d is exponential, we assume that
the polytope Q is given by a (demand) oracle, which for any given λ ∈ R

m
≥0,

finds a column Aj of A that maximizes4 Vj −
∑

i λiAij/bi. We denote by len(Q)
the size of the input description of (the oracle of) Q.

For ǫ ∈ (0, 1], we say that an algorithm F is a fully polynomial-time approxi-
mation scheme (FPTAS) for Q if, for any V ∈ R

d, it returns in polynomial time
an x∗ ∈ Q such that V Tx∗ ≥ (1 − ǫ)maxx∈Q V Tx. We denote by TF(len(Q), ǫ)

4 In the combinatorial auction problem, there are variables xi,S. Let qi be the mul-
tiplier for the constraint corresponding to agent i and let pj be the multiplier
(price) for item j. Then the demand oracle must find the pair (i, S) maximizing
vi(S)− qi −

∑

j∈S
pj , a question of direct economical interpretation.

4

the running time of F on input V (we assume it does not depend on V). A
number of such FPTAS’s exist in the literature (see, e.g., [4,11,10,14,15,19,20]).
We are interested mostly in FPTAS’s that allow the use of an oracle to over-
come the difficulty of dealing explicitly with an exponential dimension. Most of
the currently known techniques (if not all) with this property have a quadratic
dependence on 1

ǫ (see, e.g., the Garg-Könemann routine [10] in Theorem ?? in
Appendix D.

For α ∈ (0, 1], we say that an algorithm F ′ is an α-integrality-gap-verifier for
QI if, for any V ∈ R

d and any x∗ ∈ Q, it returns in polynomial time an x ∈ QI

such that V Tx ≥ α · V Tx∗. In other words, the algorithm returns an integral
solution in Q whose objective value is at least α times the optimal fractional
objective value. We denote by TF ′(len(Q), s) the running time of F ′ on input
(V, x∗), where len(Q) denotes the size of the input description of Q and s is the
size of the support of x∗.

Theorem 2. Consider a packing polytope Q ⊆ R
d, described as in (1) and

admitting an FPTAS F returning a solution with support s when asked for a
(1 − ǫ)-optimal solution, and an α-integrality-gap-verifier F ′ for QI . Then, for
any ǫ0 ∈ (0, 1

2], there is a ((1−5ǫ0)α, 1−ǫ0)-rel-TIE M for (QI ,V) with running

time TM = Õ(n · TF(len(Q), ǫ) + ǫ−2
0 s(TF ′(len(Q), s) + s)). Here, ǫ = Θ(ǫ50/n

4)
is defined as in Proposition 2.

Proof. By Corollary 2, there is a ((1 − ǫ0)(1 − ǫ), 1 − ǫ0)-rel-TIE M for (Q,V)
with running time TM = O(n · TF(len(Q), ǫ)). Let (x̂, p̂) be the allocation and
payments output by M. We then use F ′ and Theorem 3 to obtain a convex rep-
resentation of αx̂/(1+3ǫ0) in terms of integral solutions in QI . By Proposition 3,
we now have a a ((1 − ǫ0)α(1− ǫ)/(1 + 3ǫ0), 1− ǫ0)-rel TIE for (QI ,V).

We turn to the running time. Depending on the random choice of the player’s
index i in the first step of Algorithm 1, M uses the FPTAS F either to compute
a (1− ǫ)-optimal solution x̂ = x∗ ∈ Q for the fractional social welfare problem if
i = 0, or to compute a point x̂ = ui ∈ Q maximizing within (1− ǫ) the fractional
social welfare for only player i ≥ 1. In either case, x̂ has support of size s and
it takes time TF(len(Q), ǫ) to find it. Finally, in step 3 of Algorithm 1 we need
to compute β as defined in (6) and then the payments according to (2) and (3)
of Proposition 1. This takes time O(n) times TF (len(Q), ǫ). The computation of
the convex decomposition also takes time ǫ−2

0 s log s(TF ′(len(Q), s)+ s log s). ⊓⊔
We remark that in Theorem 2, we can assume the value of s = ǫ−2m logm

(see [10] and Theorem 6 in Appendix D). We may also use the Simplex algorithm5

5 Let x be a feasible solution with all components positive (we may drop components
that are zero). After adding slack variables and removing all columns corresponding
to zero variables, we may assume that our system is of the form Ax = b and that A
has full row rank. Split A into AB and AN where AB is square and invertible. Split
the variables and the objective function V accordingly. Then xB = A−1

B (b−ANxN)
and z = VBA

−1
B b+(VN −V T

B A−1
B AN)xN . Consider any variable in xN . Its coefficient

in z tells us whether we should increase or decrease to improve the objective value.
Do so until some variable becomes zero and eliminate the variable. Repeat until A is

5

to reduce the size of the support to s = m, but this takes additional O(ms2)
time.

3 Approximately truthful mechanisms

In this section we will study mechanisms that combine a β-abs-MIDR allocation
rule and a randomized payment rule inspired by the VCG payment rule. We
construct mechanisms that have no positive transfer, are individually rational,
and 3β-truthful in expectation (Corollary 1). A VCG mechanism chooses an
allocation x∗ ∈ argmaxx∈Ω

∑

1≤i≤n vi(x) maximizing social welfare and charges
the j-th player the price maxx∈Ω

∑

1≤i≤n,i6=j(vi(x)− vi(x
∗)), i.e., the maximum

total value obtainable for the players different from j minus their value obtained
under the allocation x∗. This can be considered as the harm done by player
j to the other players. Let A be any randomized allocation rule and let β be
a parameter to be determined later (as in Proposition 1 below). We use the
following randomized payment rule:

pi(v) :=

{

max{pVCG

i (v)−β,0}
E[vi(x)]

vi(x) if E[vi(x)] > 0, where x ∼ A(v)

0 otherwise
(2)

and pVCG

i (v) := Ex∼A(0,v−i)[v−i(x)] − Ex∼A(v)[v−i(x)], (3)

where v−i(x) =
∑

j 6=i vj(x). Observe the similarity in the definition of pVCG
i (v)

to the VCG payment rule. In both cases, the payment is defined as the difference
of the total value of two allocations to the players different from i. The first
allocation ignores the influence of player i (A(0, v−i)) and the second allocation
takes it into account (A(v)). Consider next the definition of pi(v). If β = 0
and the allocation rule is deterministic and hence vi(x) = E[vi(x)], the first line
simplifies to pV CG

i (v), i.e., pi(v) = pV CG
i (v). Our definition takes into account

that we will consider an allocation rule that only approximately maximizes social
welfare (up to an error of β) and that our allocation rules are randomized;
therefore the multiplication by vi(x)/E[vi(x)].

Proposition 1. Given an allocation rule A : V → D(Ω), a constant ǫ ∈ [0, 1],
and functions β : V → R≥0, such that for all i, ṽ := (ṽi, v−i), v := (vi, v−i) ∈ V,

Ex∼A(ṽ)[ṽ(x)] ≥ Ex∼A(v)[ṽ(x)] − β(0, v−i)− ǫ · Ex∼A(v)[ṽi(x)], (4)

the above payment rule, where β := β(0, v−i) is used in (2), yields an indi-
vidually rational mechanism with no positive transfer, such that for all i, and
v := (vi, v−i) ∈ V,

Ex∼A(v̄)[Ui(v̄)] ≥ Ex∼A(v)[Ui(v)]− ǫ · Ex∼A(v)[v̄i(x)] − 3β(0, v−i), (5)

when v̄ := (v̄i, v−i) and v̄i is the true valuation of player i.

a square matrix. In at most s+m iterations one arrives at a basic feasible solution.
In each iteration one has to solve a m × s linear system (time m2s; by rank-one

updates, once ca reduce the time to ms).

6

Proof. The quite technical proof can be found in Appendix A. ⊓⊔

Corollary 1. Given an (α, β)-abs-MIDR w.r.t. range R and some constants α
and β, one can obtain an (α, 3β)-abs-TIE individually rational mechanism with
no positive transfer.

Proof. This follows from proposition 1 by setting β(0, v−i) = β for all i and
v−i ∈ V−i and ǫ = 0. ⊓⊔

[9] showed how to obtain a β-rel-TIE from an (α, β)-rel-MIDR. We derive
here a similar but more efficient mechanism from Proposition 1. Consider a
(1 − ǫ)-rel-MIDR with allocation rule A, and let ui ∈ Q be s.t. vi(u

i) ≥
(1 − ǫ) argmaxx∈Q vi(x). We start with the observation that condition (4) in
Proposition 1 is satisfied with

β(0, v−i) :=
ǫ

1− ǫ

∑

j 6=i

vj(u
j). (6)

Indeed, let ṽ = (ṽi, v−i). Then

Ex∼A(ṽ)[ṽ(x)] ≥ (1 − ǫ) max
A′∈R

Ex∼A′ [ṽ(x)] ≥ (1− ǫ)Ex∼A(v)[ṽ(x)]

= Ex∼A(v)[ṽ(x)] − ǫ · Ex∼A(v)[
∑

j 6=i

ṽj(x)]− ǫ · Ex∼A(v)[ṽi(x)]

≥ Ex∼A(v)[ṽ(x)] − β(0, v−i)− ǫ · Ex∼A(v)[ṽi(x)]. (7)

Here, the first inequality follows from the fact that A is (1 − ǫ)-rel MIDR, the
second inequality follows from A ∈ R, and the last inequality follows from
Ex∼A(v)[

∑

j 6=i ṽj(x)] = Ex∼A(v)[
∑

j 6=i vj(x)] ≤
1

1−ǫ

∑

j 6=i vj(u
j).

Proposition 2. Let ǫ0 ∈ (0, 1/2] and let ǫ = (1 − ǫ0)
2ǫ50/(4n

4) = Θ(ǫ50/n
4).

Given an (α, 1 − ǫ)-rel-MIDR allocation rule A0 w.r.t. range R, Algorithm 1
defines an (α′, β′)-rel-TIE M = (A,P) with no positive transfer, α′ := (1− ǫ0)α
and β′ := 1− ǫ0, which is individually rational with probability at least 1− ǫ0.

Proof. Define θ := ǫ0
n , γ′ := ǫ0θ

n and γ := θ(1− θ)nγ′. In step 5 of the algorithm,
we choose τ(v−i) := γ′

∑

j 6=i v
j(uj). Observe that (1−θ)n+

∑n
i=1 θ(1−θ)n−i = 1.

Let Ex,p∼M0(v)[Ui(v)] be the expected utility of player i obtained from the input
MIDR mechanism M0 := (A0,P0) with payment rule P0 defined by (2) and (3),
where β is defined as in (6) (c.f. Proposition 1). Following [9], we call player i
active if the following two conditions hold:

Ex,p∼M0(v)[Ui(v)] +
ǫ0θ

(1− θ)i
vi(u

i) ≥
θ

(1− θ)i
τ(v−i)

vi(u
i) ≥ γ

∑

j 6=i

vj(u
j). (8)

The proof that the algorithm has the stated properties is given in Appendix B.
⊓⊔

7

Algorithm 1 rel-TIE(v,Q,M): Constructing a rel-TIE M = (A,P) from an
(α, 1−ǫ)-rel-MIDR allocation rule A0 (Proposition 2). The vectors ui are defined
as above. The choice of θ and the definition of active and τ(v−j) is given in
Proposition 2.

Require: A valuation vector v ∈ V, a packing convex set Q and (α, 1− ǫ)−MIDR M
Ensure: An allocation x ∈ Q and a payment p ∈ R

n

1: Choose an index i ∈ {0, 1, . . . , n}, where 0 is chosen with probability (1− θ)n and
i ≥ 1 is chosen with probability θ(1− θ)n−i.

2: if i = 0 then

3: Use the input MIDR A0 with payment rule (2) and (3) of Proposition 1, where
β is defined as in (6) to get an allocation x = (x1, . . . , xn) ∈ Q and payment
p = (p1, . . . , pn) ∈ R

n . For all inactive j, change xj and pj to zero.
4: else

5: For j = 1, . . . , n, find uj ∈ Q be s.t. vj(u
j) ≥ (1− ǫ) argmaxx∈Q vj(x).

6: For every 1 ≤ j ≤ n, set

xj = uj , pj = τ (v−j) if j = i and i is active,
xj = uj , pj = 0 if j = i and i is inactive,
xj = 0, pj = 0 if j 6= i.

7: end if

8: return (x, p)

4 Obtaining truthful-in-expectation mechanisms

We come to the heart of the paper. In Section 4.1 we use Proposition 2 to
obtain an almost-TIE from an FPTAS for Q. This almost-TIE is fractional in
the sense that it returns an arbitrary vector in Q. In Section 4.2 we review the
method of Lavi and Swamy for obtaining an integral TIE from a fractional TIE.
A key ingredient for this method is an algorithm for writing any point in the
convex hull of QI as a convex combination of polynomially many points in QI .
In Section 4.3, we describe a simple algorithm for approximately achieving such
a decomposition.

4.1 Obtaining a fractional TIE

Corollary 2. Suppose that there is an FPTAS F for Q with running time

TF(len(Q), 1
ǫ). Then, for any ǫ ∈ (0, 1

2], there is a ((1− ǫ)(1−Θ(ǫ5

n4)), 1− ǫ)-rel-

TIE M for (Q,V) with running time TM = O(n · TF(len(Q), Θ(ǫ5

n4))).

Proof. We apply Proposition 2. The given algorithm F can be interpreted as
a (1 − ǫ, 1 − ǫ)-rel-MIDR for (Q,V) as follows. Let R = {δx : x ∈ Q} be
a set of one-point distributions6, where δx chooses x with probability 1 and

6 Formally, δx is the Dirac delta density satisfying: δ(x − y) = +∞, if y = x, and
δx(y) = 0 for y 6= x and

∫

y∈Q
δ(x− y)dy = 1.

8

the other points with probability 0. Suppose that, on input v ∈ V , F returns
x∗ ∈ {x : v(x) ≥ (1− ǫ)maxx∈Q v(x)}. Then we use the allocation rule v 7→ δx

∗

.
This is a (1 − ǫ)-rel MIDR since

Ey∼δx∗ [v(y)] = v(x∗) ≥ (1− ǫ)max
x∈Q

v(x) = (1− ǫ)max
x∈Q

Ey∼δx [v(y)].

The allocation rule is also (1−ǫ)-socially efficient since v(x∗) ≥ (1−ǫ)maxx∈Q v(x).
An application of Proposition 2 finishes the proof. ⊓⊔

4.2 Obtaining an integral TIE

This section is essentially a review of key parts of [16,17]. For each y ∈ conv(QI)
we define a distribution Dy

ch. Any such y can be written as a convex combination
of points in QI , i.e., y =

∑

z∈QI
λzz and

∑

z∈QI
λz = 1 (this representation is

not unique). For every y ∈ conv(QI), we fix an arbitrary such presentation. Then
Dy

ch assigns probability λz to z. For any linear function f : QI → R, we have by
linearity of expectation Ex∼Dy

ch
[f(x)] = f(Ex∼Dy

ch
[x]) = f(y).

Proposition 3. Let M = (A,P) be a (γ, β)-abs-TIE (resp., (γ, β)-rel-TIE) for
(Q,V). Suppose that there is an α ∈ (0, 1] such that α · x ∈ conv(QI) for each
x ∈ Q. Then, the mechanism M′ = (A′,P ′) is an (αγ, αβ)-abs-TIE (resp.,
(αγ, β)-rel-TIE) for (QI ,V), where the rule A′ : V → D(QI) is defined by
x′ ∼ A′(v) if and only if x′ ∼ Dα·x

ch and x ∼ A(v), and the payment P ′ : V → R
n
+

is given by: p′i(v) := pi(v)
vi(x

′)
vi(x)

, where x ∈ Q and x′ ∈ QI are the points allocated

by A(v) and A′(v), respectively.

Proof. The rangeR′ of the rule A′ is the set of distributionsD′ such that x′ ∼ D′

if and only if x′ ∼ Dα·x
ch and x ∼ D, for some D ∈ R. For each D′ ∈ R′, we fix

one such D ∈ R and denote it by D(D′). For any v ∈ V , we have

Ex′∼A′(v)[v(x
′)] = Ex∼A(v)

[

Ex′∼Dα·x
ch

[v(x′)]
]

= Ex∼A(v) [α · v(x)] ≥ αγ · z∗Q(v) ≥ αγ · z∗QI
(v), (9)

where the inequality holds because A is γ-socially efficient. Hence by (9), the
allocation rule A′ is αγ-socially efficient.

Let Ui and U ′
i be the utilities of player i w.r.t. the M and M′, respectively.

Suppose that M is a β-abs-TIE. Then, for any v ∈ V , we have

Ex′,p′∼M′(v)[U
′
i(x

′)] = Ex∼D(A′(v))

[

Ex′∼Dα·x
ch

[vi(x
′)]
]

− Ex∼D(A′(v)),p∼P

[

pi(v)

vi(x)
Ex′∼Dα·x

ch
[vi(x

′)]

]

= α · Ex∼D(A′(v)) [vi(x)]− α · Ep∼P [pi(v)] = α · Ex,p∼M(v)[Ui(x)].
(10)

The claim follows from (10). Note also that M′ is individually rational if M
is. ⊓⊔

9

4.3 A fast algorithm for Carr-Vempala decomposition

Let us N to index the elements in QI , let F ′ be an α-integrality-gap-verifier
for QI , and let x∗ ∈ Q. Carr and Vempala [CV02] showed that in polynomial
time one can express α · x∗ as a convex combination of integer points in Q:
α ·x∗ =

∑

i∈N λix
i,
∑

i∈N λi = 1, λi ≥ 0 for all i ∈ N . Note that αx∗ ∈ Q since
x∗ ∈ Q and Q has the packing property. We show an approximate version that
replaces the use of the Ellipsoid method by the MWU method.

Theorem 3. Given a fractional point x∗ of (1), and an α-integrality-gap verifier
F ′ for QI , then for any ǫ > 0, we can find a set N ′ ⊆ N of size O

(

ǫ−2s log s
)

,
where s = |S+| and S+ = {j : x∗

j > 0}, and numbers λi, for i ∈ N ′, such

that λi > 0 for all i ∈ N ′,
∑

i∈N ′ λi = 1 and α
1+3ǫ · x∗ =

∑

i∈N ′ λix
i. The

running time of the algorithm is O(ǫ−2s log s(TF ′(len(Q), s) + s log s)), where
TF ′(len(Q), s) is the running of F ′ on an objective vector of support s.

Proof. The task of finding the multipliers λi is naturally formulated as a covering
LP. Minimize min

∑

i∈N λi subject to
∑

i∈N λix
i
j ≥ α ·x∗

j for all j,
∑

i∈N λi ≥ 1,
and λi ≥ 0. In the language of Appendix C, we have m = s+1, n = |N |, c = 1,
b = (αx∗, 1). The matrix A = (aj,i) is as follows:

aj,i :=

{

xi
j 1 ≤ j ≤ s, i ∈ N

1 j = s+ 1, i ∈ N

Thus we can apply the algorithm for covering LP’s in Appendix C, provided we
can efficiently implement the required oracle. We show that we can use F ′ to
implement an oracle O′. To do this, we first scale inequality j in the LP by αx∗

j .

Oracle O′ has arguments (A, z̃) such that 1T z̃ = 1. Let us conveniently write

z̃ = (w, z), where w ∈ R
S+

≥0 , z ∈ R≥0, and
∑

j∈S+ wj + z = 1. Oracle O′ needs to

find a column i such that z̃TA1i ≥ 1. In our case z̃TA1i =
∑s

j=1 wjx
i
j/αx

∗
j + z,

and we need to find a column i for which this expression is at least one. Since z
does not depend on i, we concentrate on the first term. Define

Vj :=

{

wj

αx∗
j

j ∈ S+

0 otherwise.

Call algorithm F ′ with x∗ ∈ Q and V := (V1, . . . , Vd). F
′ returns an integer

solution xi ∈ QI such that
∑

j∈S+
wj

αx∗
j

xi
j = V Txi ≥ α · V Tx∗ =

∑

j∈S+ wj , and

hence,
∑

j∈S+
wj

α·x∗
j

xi
j + z ≥

∑

j∈S+ wj + z = 1, this i is the desired column of

A. It follows by Corollary 3 that Algorithm 2 finds a feasible solution λ′ ∈ R
|N |
≥0

to the cover LP, and a set vectors Q′
I ⊆ QI (returned by the oracle), such

that λ′
i > 0 only for i ∈ N ′, |N ′| ≤ s ln s

ǫ2 , and
∑

i∈N ′ λ′
i ≤ (1 + 3ǫ). Scaling

λ′
i by

∑

i∈N ′ λ′
i, we obtain a set of vectors with index set N ′ ⊆ N , and convex

multipliers {λi : i ∈ N ′}, such that

∑

i∈N ′

λix
i ≥

α

1 + 3ǫ
x∗. (11)

10

We may assume xi
j = 0 for all j /∈ S+ whenever λi > 0; otherwise simply replace

xi by a vector in which all components not in S+ are set to zero.
We will use the packing property of the polytope Q to modify the set N ′

to a new set satisfying equality in (11) (such a construction seems to have been
observed in [16], although not given explicitly). Since reducing a positive xi

j by
one as long as (11) holds maintains feasibility, we may assume without loss of
generality that the set of vectors indexed by N ′ satisfy the following minimality
condition,

for all i ∈ N ′, j ∈ S+ either xi
j = 0, or

∑

i′∈N ′, i′ 6=i

λi′x
i′

j +λix
i
j−λi <

α

1 + 3ǫ
x∗
j .

(12)
For j ∈ S+, let ∆j =

α
1+3ǫx

∗
j −
∑

i∈N ′ λix
i
j . Then ∆j ≥ 0 and, by (12), for every

j ∈ S+, and i ∈ N ′ either ∆j < λi ≤ λix
i
j or xi

j = 0. If ∆j = 0 for all j, we

are done. Otherwise, choose j∗ and i ∈ N ′ such that ∆j∗ > 0 and xi
j∗ > 0. Let

B = {j ∈ S+ : xi
j 6= 0} be the set of indices of non-zero components of xi. We

will change the left-hand side of (11) such that equality holds for all indices in
B. The change will not destroy an already existing equality for an index outside
B.

By renumbering the coordinates, we may assume B = [1..b], where b = |B|,
and ∆1/x

i
1 ≤ . . . ≤ ∆b/x

i
b. For j ≤ b, we have

λix
i
j−∆j =

(

λi −
∆b

xi
b

)

xi
j+

∑

j≤ℓ<b

(

∆ℓ+1

xi
ℓ+1

−
∆ℓ

xi
ℓ

)

xi
j+

∑

1≤ℓ<j

(

∆ℓ+1

xi
ℓ+1

−
∆ℓ

xi
ℓ

)

0+
∆1

xi
1

0

For 0 ≤ ℓ < b define a vector yℓ by yℓj = xi
j for j ≤ ℓ and yℓj = 0 for j > ℓ. Then

λix
i
j −∆j =

(

λi −
∆b

xi
b

)

xi
j +

∑

1≤ℓ<b

(

∆ℓ+1

xi
ℓ+1

−
∆ℓ

xi
ℓ

)

yℓj +
∆1

xi
1

y0j for all j ≤ b.

(13)
Note that the coefficients on the right-hand side of (13) are non-negative and
sum up to λi. Also, by the packing property of Q, yℓ ∈ QI for 0 ≤ ℓ < b. We
now change the left-hand side of (11) as follows: we replace λi by λi − ∆b/x

i
b,

for 1 ≤ ℓ < b, we increase the coefficient of yℓ by ∆ℓ+1/x
i
ℓ+1 − ∆ℓ/x

i
ℓ and we

increase the coefficient of y0 by ∆1/x
i
1. As a result, we now have equality for all

indices in B. The ∆j for j 6∈ B are not affected by this change. ⊓⊔

References

1. S. Arora, E. Hazan, and S. Kale. Multiplicative weights method: a meta-algorithm
and its applications. Technical report, Princeton University, USA, 2006.

2. M. Babaioff, R. Lavi, and E. Pavlov. Single-value combinatorial auctions and
algorithmic implementation in undominated strategies. J. ACM, 56(1), 2009.

3. Anand Bhalgat, Sreenivas Gollapudi, and Kamesh Munagala. Optimal auctions
via the multiplicative weight method. In EC, pages 73–90, 2013.

11

4. D. Bienstock and G. Iyengar. Approximating fractional packings and coverings in
O(1/epsilon) iterations. SIAM J. Comput., 35(4):825–854, 2006.

5. P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian
mechanism design. In STOC, pages 39–48, 2005.

6. G. Christodoulou, K. Elbassioni, and M. Fouz. Truthful mechanisms for exhibi-
tions. In WINE, pages 170–181, 2010.

7. S. Dobzinski and S. Dughmi. On the power of randomization in algorithmic mech-
anism design. In FOCS, pages 505–514, 2009.

8. S. Dughmi and T. Roughgarden. Black-box randomized reductions in algorithmic
mechanism design. In FOCS, pages 775–784, 2010.

9. Shaddin Dughmi, Tim Roughgarden, Jan Vondrák, and Qiqi Yan. An approxi-
mately truthful-in-expectation mechanism for combinatorial auctions using value
queries. CoRR, abs/1109.1053, 2011.

10. N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In FOCS, pages 300–309, 1998.

11. M.D. Grigoriadis and L.G. Khachiyan. A sublinear-time randomized approxima-
tion algorithm for matrix games. Operations Research Letters, 18(2):53 – 58, 1995.

12. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-

rial Optimization. Springer, New York, 1988.
13. M. Hoefer, T. Kesselheim, and B. Vöcking. Approximation algorithms for sec-

ondary spectrum auctions. In SPAA, pages 177–186, 2011.
14. R. Khandekar. Lagrangian Relaxation Based Algorithms for convex Programming

Problems. PhD thesis, Indian Institute of Technology, Delhi, India, 2004.
15. C. Koufogiannakis and N.E. Young. Beating simplex for fractional packing and

covering linear programs. In FOCS, pages 494–504, 2007.
16. R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear

programming. In FOCS, pages 595–604, 2005.
17. Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via

linear programming. J. ACM, 58(6):25, 2011.
18. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game

Theory. Cambridge University Press, 2007.
19. S.A. Plotkin, D.B. Shmoys, and É. Tardos. Fast approximation algorithms for

fractional packing and covering problems. In FOCS, pages 495–504, 1991.
20. N.E. Young. Sequential and parallel algorithms for mixed packing and covering.

In FOCS, pages 538–546, 2001.

12

A The Proof of Proposition 1

Clearly, pi(v) ≥ 0 by definition, so this is a mechanism with no positive transfer.
To see individual rationality, we need only to consider the case when Ex∼A(v̄)[v̄i(x)] >
0 and pi(v̄) = (pV CG

i (v̄)−β(0, v−i))v̄i(x)/Ex∼A(v̄)[v̄i(x)] > 0, since in either case
Ex∼A(v̄)[v̄i(x)] = 0 or (Ex∼A(v̄)[v̄i(x)] > 0 and pi(v̄) = 0), we have Ui(v̄i, v−i) =
v̄i(x) ≥ 0. But then, for x ∼ A(v̄),

Ui(v̄) = v̄i(x)− pi(v̄) (substitute pi(v̄))

=
(

Ex∼A(v̄)[v̄i(x)] − pV CG
i (v̄) + β(0, v−i)

) v̄i(x)

Ex∼A(v̄)[v̄i(x)]

= (Ex∼A(v̄)[v̄(x)] − Ex∼A(0,v−i)[v̄(x)] + Ex∼A(0,v−i)[v̄i(x)] + β(0, v−i))
v̄i(x)

Ex∼A(v̄)[v̄i(x)]

≥ (1− ǫ)Ex∼A(0,v−i)[v̄i(x)]
v̄i(x)

Ex∼A(v̄)[v̄i(x)]
≥ 0,

(set ṽ = v̄, v = (0, v−i), then apply (4)).

To argue about truthfulness, we first show that pV CG
i (v) ≥ −β(0, v−i), for all

v ∈ V . By setting ṽ = (0, v−i), we have Ex∼A(ṽ)[ṽ(x)] = Ex∼A(0,v−i)[v−i(x)],
Ex∼A(v)[ṽ(x)] = Ex∼A(v)[v−i(x)] and Ex∼A(v)[ṽi(x)] = 0. Now applying (4), we
get

PV CG
i (v) = Ex∼A(ṽ)[ṽ(x)] − Ex∼A(v)[ṽ(x)] + ǫ · Ex∼A(v)[ṽi(x)]

≥ −β(0, v−i). (14)

In the following we show that for all v ∈ V ,

Ex∼A(v)[pi(v)]− pV CG
i (v) ∈ [−β(0, v−i), β(0, v−i)]. (15)

To see (15), we consider two cases:

Case1. Ex∼A(v)[vi(x)] > 0. Then using (14)

Ex∼A(v)[pi(v)]− pV CG
i (v) =

E[
max{pV CG

i (v)− β, 0}

E[vi(x)]
vi(x)]− p

V CG(v)
i =

E[max{pV CG
i (v)− β, 0}]

E[vi(x)]
E[vi(x)] − pV CG

i (v) =

max{−β(0, v−i),−pV CG
i (v)} ∈ [−β(0, v−i), β(0, v−i)].

Case 2. Ex∼A(v)[vi(x)] = 0. Then by (14) we have

Ex∼A(v)[pi(v)]− pV CG
i (v) = −pV CG

i (v) ≤ β(0, v−i).

13

By definition of pV CG
i and (4) we conclude that

− pV CG
i (v) =

Ex∼A(v)[v(x)] − Ex∼A(0,v−i)[v(x)] + Ex∼A(0,v−i)[vi(x)]− Ex∼A(v)[vi(x)] =

Ex∼A(v)[v(x)] − Ex∼A(0,v−i)[v(x)] + Ex∼A(0,v−i)[vi(x)] ≥

(1− ǫ)Ex∼A(0,v−i)[vi(x)]− β(0, v−i) ≥ −β(0, v−i).

Let v̄ = (v̄i, v−i) in which v̄i is the true valuation of player i, and let v = (vi, v−i)
be any arbitrary valuation. By using (4) and (15), we have

Ex∼A(v̄)[Ui(v̄)] = Ex∼A(v̄)[v̄i(x)] − Ex∼A(v̄)[pi(v̄)]

(by definition of Ui(v̄))

≥ Ex∼A(v̄)[v̄i(x)]− pV CG
i (v̄)− β(0, v−i)

(apply (15) for v = v̄)

= Ex∼A(v̄)[v̄(x)] − Ex∼A(0,v−i)[v−i(x)] − β(0, v−i)

(by definition of pV CG
i (v̄))

≥ Ex∼A(v)[v̄(x)] − Ex∼A(0,v−i)[v−i(x)] − ǫ · Ex∼A(v)[v̄i(x)] − 2β(0, v−i)

(apply (4) for ṽ = v̄)

= Ex∼A(v)[v̄i(x)]− pV CG
i (v)− ǫ · Ex∼A(v)[v̄i(x)] − 2β(0, v−i)

(by definition of pV CG
i (v))

≥ Ex∼A(v)[v̄i(x)]− Ex∼A(v)[pi(v)] − ǫ · Ex∼A(v)[v̄i(x)]− 3β(0, v−i)

(apply (15))

= Ex∼A(v)[Ui(v)]− ǫ · Ex∼A(v)[v̄i(x)]− 3β(0, v−i)

(by definition of Ui(v)).

B The Proof that Algorithm 1 has the stated properties

We denote by T = T (v) the set of active players when the valuation is v =
(v1, . . . , vn).

Non-negativity of payments is immediate from the definition of the mech-
anism, and Proposition 1. Moreover, the utility of a truth-telling bidder i can
be negative only if it is allocated in step 5, which can happen with probability
θ(1 − θ)n−i. It follows that the mechanism is individually rational with proba-
bility at least

1− θ

n
∑

i=1

(1− θ)n−i = (1− θ)n = (1−
ǫ0
n
)n ≥ 1− ǫ0.

We next argue that the mechanism is β′-rel-TIE, for β′ := 1 − ǫ0. Let
Ex,p∼M(v)[U

′
i(v)] be the expected utility of player i obtained from the mechanism

in Algorithm 1 on input v ∈ V . Then

14

Ex,p∼M(v)[U
′
i(v)] =

(1− θ)n · Ex,p∼M0(v)[Ui(v)]
+θ(1− θ)n−i(v̄i(u

i)− τ(v−i)) if i ∈ T (v),

θ(1 − θ)n−i · v̄i(u
i) otherwise.

(16)

Let v̄ := (v̄i, v−i) be the valuation where v̄i is the true valuation of player i and
v := (vi, v−i) ∈ V be another valuation. Note that equation (16) implies that

Ex,p∼M(v̄)[U
′
i(v̄)] ≥ (1− ǫ0)(1 − θ)n−iθ · v̄i(u

i). (17)

Indeed, the inequality is trivially satisfied if i 6∈ T (v̄). On the other hand, if
i ∈ T (v̄), then the second inequality in (8) implies that Ex,p∼M0(v̄)[Ui(v̄)] ≥

1
(1−θ)i θ

(

τ(v−i)− ǫ0v̄i(u
i)
)

, implying (17).

We consider four cases:

Case 1: i ∈ T (v̄) ∩ T (v). Note that the first inequality in (8) for v̄ implies that
β(0, v−i) ≤

ǫ
γ v̄i(u

i). Thus, by (7) and Proposition 1,

Ex,p∼M0(v̄)[Ui(v̄)] ≥ Ex,p∼M0(v)[Ui(v)]− ǫ(1 +
3

γ
)v̄i(u

i).

This together with (16) and (17) imply that

Ex,p∼M(v)[U
′
i(v)] ≤ Ex,p∼M(v̄)[U

′
i(v̄)] + ǫ(1− θ)n

(

1 +
3

γ

)

v̄i(u
i)

≤

(

1 +
ǫ(1− θ)n

(1− ǫ0)(1 − θ)n−iθ

(

1 +
3

γ

))

Ex∼M(v̄)[U
′
i(v̄)]

≤ (1 + ǫ0)Ex∼M(v̄)[U
′
i(v̄)],

where the last inequality follows from the definition of ǫ.

Case 2: i 6∈ T (v). By (17), we have

Ex,p∼M(v)[U
′
i(v)] = θ(1 − θ)n−iv̄i(ui) ≤

1

1− ǫ0
Ex,p∼M(v̄)[U

′
i(v̄)].

Case 3: i ∈ T (v)\T (v̄) and v̄i(u
i) < γ

∑

j 6=i vj(u
j) = γ τ(v−i)

γ′ = θ(1−θ)nτ(v−i).
Then

Ex,p∼M(v)[U
′
i(v)] ≤ ((1− θ)n + θ(1− θ)n−i)v̄i(u

i)− θ(1− θ)n−iτ(v−i)

< ((1− θ)n + θ(1− θ)n−i − 1)v̄i(u
i) ≤ 0 ≤ θ(1 − θ)n−iv̄i(u

i)

= Ex,p∼M(v̄)[U
′
i(v̄)].

Case 4: i ∈ T (v) \ T (v̄) and v̄i(u
i) ≥ γ

∑

j 6=i vj(u
j). Then

Ex,p∼M0(v̄)[Ui(v̄)] <
θ

(1− θ)i
(

τ(v−i)− ǫ0v̄i(u
i)
)

.

15

By (7) and Proposition 1, Ex,p∼M0(v̄)[Ui(v̄)] ≥ Ex,p∼M0(v)[Ui(v)]−ǫ(1+ 3
γ)v̄i(u

i).
These inequalities together imply that

Ex,p∼M(v)[U
′
i(v)] ≤

(1− θ)n
(

Ex,p∼M0(v̄)[Ui(v̄)] + ǫ

(

1 +
3

γ

)

v̄i(u
i)

)

+ (1− θ)n−iθ(v̄i(u
i)− τ(v−i))

≤ (1− θ)n−iθ · τ(v−i)− (1− θ)n−iθǫ0v̄i(u
i)

+ ǫ

(

1 +
3

γ

)

v̄i(u
i) + (1− θ)n−iθ(v̄i(u

i)− τ(v−i))

= (1− ǫ0)(1 − θ)n−iθ · v̄i(u
i) + ǫ

(

1 +
3

γ

)

v̄i(u
i)

= (1− ǫ0)Ex,p∼M(v̄)[U
′
i(v̄)] + ǫ

(

1 +
3

γ

)

v̄i(u
i)

≤

(

1− ǫ0 +
ǫ

(1− ǫ0)(1 − θ)n−iθ

(

1 +
3

γ

))

Ex,p∼M(v̄)[U
′
i(v̄)]

≤
1

1− ǫ0
Ex,p∼M(v̄)[U

′
i(v̄)].

We argue now about the approximation ratio. Note that for i 6∈ T (v), we have
by (8) and the individual rationality of the mechanism M0 (c.f. Proposition 1)

that vi(u
i) < γ′

ǫ0

∑

j 6=i vj(u
j). Since M0 is α-socially efficient and θ(1 − θ)n−i −

(1− θ)nnγ′

ǫ0
≥ 0, it follows that for any v ∈ V ,

Ex∼A(v)[v(x)] = (1− θ)n
∑

i∈T (v)

Ex∼A0(v)[vi(x)] + θ
∑

i∈[n]

(1 − θ)n−ivi(u
i)

≥ (1− θ)nEx∼A0(v)[v(x)]− (1 − θ)n
∑

i6∈T (v)

vi(u
i)

+ θ
∑

i∈[n]

(1 − θ)n−ivi(u
i)

≥ (1− θ)nEx∼A0(v)[v(x)]− (1 − θ)n
γ′

ǫ0

∑

i6∈T (v)

∑

j 6=i

vj(u
j)

+ θ
∑

i∈[n]

(1 − θ)n−ivi(u
i)

≥ (1− θ)nEx∼A0(v)[v(x)] +
∑

i∈[n]

(

θ(1 − θ)n−i − (1 − θ)nn
γ′

ǫ0

)

vi(u
i)

≥ (1− θ)nα · z∗Ω ≥ (1 − ǫ0)α · z∗Ω.

The proposition follows.

16

C An FPTAS for covering linear programs

Consider a covering linear program:

min cTx (18)

s.t. Ax ≥ b

x ≥ 0

where A ∈ R
m×n
≥0 is an m × n matrix with non-negative entries and c ∈ R

n
>0,

b ∈ R
m
>0 are positive vectors (all entries greater zero). We may assume that

each column of A contains at least one positive entry as otherwise the corre-
sponding variable can be dropped and that each row of A contains at least one
positive entry as otherwise the problem is infeasible. Assume the availability of
the following κ-approximation oracle:

O(A, b, c, z): Given z ∈ R
m
+ , κ ∈ (0, 1], the oracle finds a column j of A that

maximizes 1
cj

∑m
i=1

ziaij

bi
within a factor of κ:

1

cj

m
∑

i=1

ziaij
bi

≥ κ · max
j′∈[n]

1

cj′

m
∑

i=1

ziaij′

bi
(19)

Denote by z∗ the value of the optimal solution to (18). In his thesis, Khandekar
[14] showed the following theorem (for an exact oracle κ = 1).

Theorem 4 ([14]). There is an algorithm that, given an error parameter ǫ ∈
(0, 1) and an oracle O(A, b, c, z), computes a feasible solution x̂ ∈ R

n
≥0 to (18)

such that cT x̂ ≤ (1 + 3ǫ)z∗. The algorithm makes O(mǫ−2 logm) calls to the
oracle, where m is the number of rows in A.

For completeness, we give a proof; our argument is slightly simpler than the
original proof.We will next show (in Corollary 3) how to modify this proof to
obtain the claim needed for the proof of Theorem 3.

The algorithm is given as Algorithm 2 and can be thought of as the algorith-
mic dual of the FPTAS for multicommodity flows given in [10]. It keeps updating
a vector x(t) ∈ R

n
≥0, for t = 0, 1, . . . , until M(t) := mini∈[m]{Aix(t)/bi} becomes

at least T := lnm
ε2 . Let Ai denote the ith row of A, and define, at any time t, the

active list L(t) := {i ∈ [m] : Aix(t− 1) < T }. For i ∈ L(t), define

pi(t) := (1− ǫ)Aix(t−1)/bi , (20)

and set pi(t) = 0 for i 6∈ L(t). At each time t, the algorithm calls the oracle
with the vector z = p(t)/‖p(t)‖1, and increases the variable xj(t) by δ(t) :=

maxi∈L(t) and ai,j(t) 6=0
bicj(t)
ai,j(t)

, where j(t) is the index returned by the oracle. Note

that the RHS of (19) is positive and hence there is always an i ∈ L(t) such that
ai,j(t) > 0. In each iteration, some entry of x is increased. Since A is a non-
negative matrix and b, c are positive vectors, this implies that the values Aix(t)
are non-decreasing, and hence L(t+ 1) ⊆ L(t) for all t.

17

Algorithm 2 Covering(A, b, c,O)

Require: a covering system (A, b, c) given by a κ−approximation oracle O, where
A ∈ R

m×n
≥0 , b ∈ R

m
>0, c ∈ R

n
>0, b > 0, c > 0, and an accuracy parameter ǫ ∈ (0, 1)

Ensure: A feasible solution x̂ ∈ R
n
≥0 to (18) s.t. cT x̂ ≤ (1+3ǫ)

κ
z∗

1: x(0) := 0; t := 0; and T := lnm

ǫ2

2: while M(t) < T do

3: t := t+ 1
4: Let j(t) := O(A, b, c,

p(t)
‖p(t)‖1

, κ)

5: xj(t)(t) := xj(t)(t− 1) + δ(t);
6: end while

7: return x̂ = x(t)
M(t)

At the end, we scale x(t) by M(t) to guarantee feasibility.

By scaling aij by 1
bicj

, we may can assume, for the purpose of the analysis,

that b = 1 and c = 1 are the vectors of all ones (of appropriate dimension). We
may also assume that ǫ ∈ (0, 1

2]. Let 1j denote the j-th unit vector of dimension
n.

Theorem 5. Procedure Covering(A, b, c,O) terminates in at most mT itera-
tions with a feasible solution x̂ of at most mT positive components. At termina-
tion, it holds that

cT x̂ ≤
(1 + 3ǫ)

κ
z∗. (21)

Proof. For simplicity assume b = 1 and c = 1. Feasibility is obvious since we
scale by M(t). Note also that the choice of δ(t) implies that

max
i∈L(t)

{ai,j(t)δ(t)} = 1. (22)

This implies the bound in the number of iterations. Observe that in every iter-
ation at least one of the Aix(t) increases by one. Since we remove i from the
active list once Aix(t) ≥ T , any i ∈ [m] can be the index that is increased by
one at most T times. We conclude that the number of iterations is bounded by
mT .

To show (21), we analyze the increase in the potential function

Φ(t) := ‖p(t+ 1)‖1.

18

‖p(t+ 1)‖1 =
∑

i∈L(t+1)

pi(t+ 1) =
∑

i∈L(t+1)

(1 − ǫ)Aixi(t)

=
∑

i∈L(t+1)

(1− ǫ)Aixi(t−1)+δ(t)Ai1j(t)

=
∑

i∈L(t+1)

pi(t)(1 − ǫ)δ(t)Ai1j(t) ≤
∑

i∈L(t+1)

pi(t)(1 − ǫδ(t)Ai1j(t))

(using (22) and (1 − ǫ)x ≤ 1− ǫx for all ǫ ∈ [0, 1), x ∈ [0, 1])

≤
∑

i∈L(t)

pi(t)(1 − ǫδ(t)Ai1j(t)) = ‖p(t)‖1

(

1−
ǫδ(t)p(t)TA1j(t)

‖p(t)‖1

)

(since L(t+ 1) ⊆ L(t))

≤ ‖p(t)‖1e
−ǫδ(t) p(t)T

‖p(t)‖1
A1j(t) . (23)

(since 1− x ≤ e−x)

Iterating, we get

‖p(t+ 1)‖1 ≤ ‖p(1)‖1e
−ǫ

∑
t
t′=1

δ(t′)
p(t′)T

‖p(t′)‖1
A1j(t′) ,

for which follows

(1 − ǫ)Aix(t) ≤ ‖p(1)‖1e
−ǫ

∑t

t′=1
δ(t′) p(t′)T

‖p(t′)‖1
A1j(t′) for all i ∈ L(t+ 1).

Taking logs and using ‖p(1)‖1 = m, we conclude that

Aix(t) · ln(1− ǫ) ≤ lnm− ǫ
t
∑

t′=1

δ(t′)
p(t′)T

‖p(t′)‖1
A1j(t′) for all i ∈ L(t+ 1). (24)

We will relate the objective value 1Tx(t) =
∑t

t′=1 δ(t
′) at time t to the optimal

value z∗ by the following claim.

Claim.
∑t

t′=1 δ(t
′) p(t′)T

‖p(t′)‖1
A1j(t′) ≥

κ·1T x(t)
z∗ .

Proof. Let x∗ ∈ R
n
≥0 be an optimal solution to (18). Then z∗ =

∑

j∈[n] x
∗
j since

we assumed cT = 1, also by feasibility of x∗, we have Ax∗ ≥ 1, and thus for any
t′,

p(t′)T

‖p(t′)‖1
Ax∗ ≥ 1.

By the choice of the index j(t′), we have that p(t′)T

‖p(t′)‖1
A1j(t′) ≥ κ p(t′)T

‖p(t′)‖1
A1j for

all j ∈ [n]. Thus,

z∗
p(t′)T

‖p(t′)‖1
A1j(t′) =

∑

j∈[n]

x∗
j

p(t′)T

‖p(t′)‖1
A1j(t′)

≥
∑

j∈[n]

x∗
jκ

p(t′)T

‖p(t′)‖1
A1j = κ

p(t′)T

‖p(t′)‖1
Ax∗ ≥ κ.

19

Multiplying both sides of this inequality by δ(t′) and summing up over 1 ≤ t′ ≤ t
finishes the proof. ⊓⊔

Using claim (C), we can deduce from (24) that

Aix(t) · ln(1− ǫ) ≤ lnm− ǫ ·
κ · 1Tx(t)

z∗
for all i ∈ L(t+ 1).

Dividing both sides by M(t), arranging, and noting that at termination M(t) ≥
T , we get that for all i ∈ L(t+ 1),

κ · 1Tx(t)

M(t)z∗
≤

ln 1
1−ǫ

ǫ
·
Aix(t)

M(t)
+

lnm

ǫ ·M(t)
≤

ln 1
1−ǫ

ǫ
·
Aix(t)

M(t)
+

lnm

ǫT
.

In particular for the index i ∈ L(t+ 1) such that M(t) = Aix(t), we have at
termination,

κ · 1T x̂

z∗
=

κ · 1Tx(t)

M(t)z∗
≤

ln 1
1−ǫ

ǫ
+

lnm

ǫT
.

Using T = lnm
ε2 , we finally get

κ · 1T x̂

z∗
≤

ln 1
1−ǫ

ǫ
+ ǫ ≤ 1 + 3ǫ,

where the last inequality follows from the fact that
ln 1

1−ǫ

ǫ ≤ 1 + 2ǫ, valid for all
ǫ ∈ (0, 1

2]. ⊓⊔

Corollary 3. Suppose b = 1, c = 1, and we use the following oracle O′ instead
of O in Algorithm 2:

O′(A, z): Given z ∈ R
m
+ , such that 1T z = 1, the oracle finds a column j of A

such that zTA1j ≥ 1.

Then the algorithm terminates in at most mT iterations with a feasible solution
x̂ having at most mT positive components, such that 1T x̂ ≤ 1 + 3ǫ.

Proof. Using the assumption about O′, we can deduce from (24) that

Aix(t) · ln(1 − ǫ) ≤ lnm− ǫ · 1Tx(t) for all i ∈ L(t+ 1).

Proceeding as in the rest of the proof of Theorem 5, we get the result. ⊓⊔

D An FPTAS for packing linear programs

Consider a packing linear program:

max cTx (25)

s.t. Ax ≤ b

x ≥ 0

20

Algorithm 3 Packing(A, b, c,O)

Require: a packing system (A, b, c) given by a demand oracle O, where A ∈ R
m×n
≥0 ,

b ∈ R
m
>0, c ∈ R

n
>0, b > 0, and an accuracy parameter ǫ ∈ (0, 1)

Ensure: A feasible solution x̂ ∈ R
n
≥0 to (25) s.t. cT x̂ ≥ 1−3ǫ

κ
z∗

1: x(0) := 0; t := 0; and T := lnm

ǫ2

2: while M(t) < T do

3: t := t+ 1
4: Let j(t) := O(A, b, c,

p(t)
‖p(t)‖1

)

5: xj(t)(t) := xj(t)(t− 1) + δ(t);
6: end while

7: return x̂ = x(t)
M(t)

where A ∈ R
m×n
≥0 is an m × n matrix with non-negative entries and c ∈ R

n
>0,

b ∈ R
m
>0 are positive vectors. We may assume that each column of A contains

a nonzero entry as otherwise the problem is trivially unbounded. Assume the
availability of the following κ-approximation oracle:

O(A, b, c, z): Given z ∈ R
m
+ , κ ≥ 1, the oracle returns a j such that

1

cj

m
∑

i=1

ziaij
bi

≤ κ · min
j′∈[n]

1

cj′

m
∑

i=1

ziaij′

bi
. (26)

We note that an oracle of this form can be simulated by O(logU) calls to a
demand oracle using binary search, where

U := max{max
j

{Vj},max
i

{bi}, 1/min
i,j

{aij}}.

Garg and Könemann proved Theorem 6 for the case κ = 1. For κ = 1, their
algorithm is an FPTAS. We give the proof for completeness.
Denote by z∗ the value of the optimal solution to (25). Consider Algorithm 3. It
constructs a sequence x(1), x(2), . . . , x(t), Let M(t) = maxi∈[m] Aix(t)/bi,
where Ai is the i-th row of A. For i ∈ [m] let

pi(t) := (1 + ǫ)Aix(t−1)/bi . (27)

At each time t, the algorithm calls the oracle with the vector z = p(t)/‖p(t)‖1,

and increases the variable xj(t) by δ(t) := maxi∈[m],ai,j(t) 6=0{
bicj(t)
ai,j(t)

}, where j(t)

is the index returned by the oracle. Note that there is always a i such that
ai,j(t) > 0 by our assumption on A. At the end, we scale x(t) by M(t) to
guarantee feasibility.

Theorem 6 ([10]). Let T = ǫ−2 lnm. Procedure Packing(A, b, c,O) terminates
in at most mT iterations with a feasible solution x̂ of at most mT positive com-
ponents. At termination, it holds that

cT x̂ ≥
(1− 3ǫ)

κ
z∗. (28)

21

Proof. We may assume b = c = 1. As in the proof of Theorem 5, we can show
that

Aix(t) · ln(1 + ǫ) ≤ lnm+ ǫ

t
∑

t′=1

δ(t′)
p(t′)T

‖p(t′)‖1
A1j(t) for all i ∈ [m]. (29)

We will relate the objective value 1Tx(t) =
∑t

t′=1 δ(t
′) at time t to the optimal

value z∗ by the following claim.

Claim.
∑t

t′=1 δ(t
′) p(t′)T

‖p(t′)‖1
A1j(t′) ≤

κ·1T x(t)
z∗ .

Proof. Let x∗ ∈ R
n
≥0 be an optimal solution to (25). Then by feasibility of x∗,

Ax∗ ≤ 1, thus we have for any t′,

p(t′)T

‖p(t′)‖1
Ax∗ ≤ 1.

By the choice of the index j(t′), we have that p(t′)T

‖p(t′)‖1
A1j(t′) ≤ κ p(t′)T

‖p(t′)‖1
A1j for

all j ∈ [n]. Thus,

z∗
p(t′)T

‖p(t′)‖1
A1j(t′) =

∑

j∈[n]

x∗
j

p(t′)T

‖p(t′)‖1
A1j(t′)

≤
∑

j∈[n]

x∗
jκ

p(t′)T

‖p(t′)‖1
A1j = κ

p(t′)T

‖p(t′)‖1
Ax∗ ≤ κ.

Multiplying both sides of this inequality by δ(t′) and summing up over 1 ≤ t′ ≤ t
finishes the proof. ⊓⊔

Using the above claim, we can deduce from (29) that

Aix(t) · ln(1 + ǫ) ≤ lnm+ ǫ ·
κ · 1Tx(t)

z∗
for all i ∈ [m].

Dividing both sides by M(t), arranging, and noting that at termination M(t) ≥
T , we get that for all i ∈ [m],

κ · 1Tx(t)

M(t)z∗
≥

ln(1 + ǫ)

ǫ
·
Aix(t)

M(t)
−

lnm

ǫ ·M(t)
≥

ln(1 + ǫ)

ǫ
·
Aix(t)

M(t)
−

lnm

ǫT
.

In particular for the index i ∈ [m] such that M(t) = Aix(t), we have at termi-
nation,

κ · 1T x̂

z∗
=

κ · 1Tx(t)

M(t)z∗
≥
ln(1 + ǫ)

ǫ
−

lnm

ǫT
.

Using T = lnm
ε2 , we finally get

κ · 1T x̂

z∗
≥
ln(1 + ǫ)

ǫ
− ǫ≥1− 3ǫ,

where the last inequality follows from the fact that ln(1+ǫ)
ǫ ≥ 1− 2ǫ, valid for all

ǫ ∈ (0, 1
2].

The bound on the number of iterations follows from the fact that
∑

iAix(t)
grows by at least one in each iteration. ⊓⊔

22

	Towards More Practical Linear Programming-based Techniques for Algorithmic Mechanism Design

