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Abstract. We study the design of cost-sharing protocols for two fun-
damental resource allocation problems, the Set Cover and the Steiner
Tree Problem, under environments of incomplete information (Bayesian
model). Our objective is to design protocols where the worst-case Bayesian
Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA)
is minimized. Although budget balance is a very natural requirement, it
puts considerable restrictions on the design space, resulting in high PoA.
We propose an alternative, relaxed requirement called budget balance in
the equilibrium (BBiE). We show an interesting connection between algo-
rithms for Oblivious Stochastic optimization problems and cost-sharing
design with low PoA. We exploit this connection for both problems and
we enforce approximate solutions of the stochastic problem, as Bayesian
Nash equilibria, with the same guarantees on the PoA. More interest-
ingly, we show how to obtain the same bounds on the PoA, by using
anonymous posted prices which are desirable because they are easy to
implement and, as we show, induce dominant strategies for the players.
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1 Introduction

A cost-sharing game, is an abstract setting that describes interactions of self-
ish players in environments where the cost of the produced solution needs to
be shared among the participants. A cost-sharing protocol prescribes how the
incurred cost is split among the users. This defines a game that is played by the
participants, who try to select outcomes that incur low personal costs. Chen,
Roughgarden and Valiant [6] initiated the design aspect, seeking for proto-
cols that induce approximately efficient equilibria, with low Price of Anarchy
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(PoA) [27]. Similarly, we study the design of cost-sharing protocols, for two
well-studied and very general resource allocation problems with numerous ap-
plications, the Set Cover and the Steiner tree (multicast) problem.

Set Cover Game. In the (weighted) set cover problem, there is a universe of
n elements, U = {1, . . . , n}, and a family of subsets of U , F = {F1, . . . , Fm}, with
weights/costs cF1

, . . . , cFm
. A subset of elements, X ⊆ U , needs to be covered by

the F ′is so that the total cost is minimized. We are interested in a game theoretic
version, where there are |X| players and |U | possible types; X corresponds to
the set of players and each player’s type associates her with a specific element
of U . Multiple players may have the same type. A player’s action is to chose a
subset from F that covers her element, and pay some cost-share for using it. A
cost-sharing method prescribes how the subsets’ costs are split among players.

Multicast Game. In a multicast game, there is a rooted (connected) undi-
rected graph G = (V,E, t), where each edge e carries a nonnegative weight ce
and t is a designated root. There are k players and |V | = n possible types; each
player’s type associates him with a specific vertex of V which needs to establish
connectivity with t. The players’ strategies are all the paths that connect their
terminal with t. A cost-sharing method defines the cost-shares of the players.

Cost-Sharing under Uncertainty. There are two different possible sources
of uncertainty that may need to be considered in the above scenarios. Firstly,
the designer needs to specify the cost-sharing protocol, having only partial in-
formation about the players’ types. Moreover, the players themselves, when they
select their actions, may have incomplete knowledge about the types of the other
players. We approach the former by using a stochastic model similar to [10], and
the latter, as a Bayesian game, introduced by [22], which is an elegant way of
modelling selfishness in partial-information settings. In a Bayesian game, play-
ers do not know the private types of the other players, but only have beliefs,
expressed by probability distributions over the possible realizations of the types.

The order of events is as follows; first, the designer specifies the cost-sharing
methods, using the product probability distribution over the players’ types, then
the players interact in the induced Bayesian game, and end up in a Bayesian Nash
Equilibrium. We are interested in the design of protocols, where all equilibria
have low cost i.e., the (Bayesian) PoA of the induced game is low.

Budget-Balance in the Equilibrium (BBiE). One of the axioms that
[6] required in their design space, that every cost-sharing protocol should satisfy,
is budget balance i.e., that the players’ cost-shares cover exactly the cost of any
solution. Although budget balance is a very natural requirement, it puts consid-
erable restrictions on the design space. However, since we expect that the players
will end up in a Nash equilibrium, it is not clear why one should be interested to
impose budget balance in non-equilibrium states; the players are going to deviate
from such states anyways. We propose an alternative, relaxed requirement that
we call budget balance in the equilibrium (BBiE). A BBiE cost-sharing protocol
satisfies budget balance in all equilibria; for any non-equilibrium profile we do
not impose this requirement. This natural relaxation, enlarges the design space
but maintains the desired property of balancing the cost in the equilibrium. More
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importantly, this amplification of the design space, allows us to design protocols
that dramatically outperform the best possible PoA bounds obtained by budget-
balanced protocols. Indeed, by restricting to budget-balanced protocols, a lower
bound of Ω(n) exists, for the complete information set cover game [6]; we ex-
tend this lower bound for the Bayesian setting. We further show a lower bound
of Ω(

√
n), for the multicast Bayesian game. We demonstrate that, by designing

BBiE protocols, we can enforce better solutions, that dramatically improve the
PoA. For the set cover game, we improve the PoA to O(n/ log n) (or O(log n) if
m = poly(n)). Regarding the multicast game, we improve the PoA to O(1).

Posted Prices. It is a very common practice, especially in large markets
and double auctions, for sellers to use posted prices. More closely to cost-sharing
games is the model proposed by Kelly [25] regarding bandwidth allocation. Kelly’s
mechanism processes players’ willingness to pay and posts a price for the whole
bandwidth. Then each player pays a price proportional to the bandwidth she
uses. This can be seen as pricing an infinitesimal quantity of bandwidth and the
players, acting as price-takers, choose some number of quantities to buy. It turns
out that it is in the best interest of the players to buy the whole bandwidth.

The use of posted prices, to serve as cost-sharing mechanism, is highly de-
sirable, but not always possible to achieve; a price is posted for each resource
and then the players behave as price takers, picking up the cheapest possible re-
sources that satisfy their requirements. Such a mechanism is desirable because it
is extremely easy to implement and also induces dominant strategies. We stress
that our main results can be implemented by anonymous posted prices.

1.1 Results and Discussion

We study the design of cost-sharing protocols for two fundamental resource allo-
cation problems, the Set Cover and the Steiner tree problem. We are interested in
environments of incomplete information where both the designer and the play-
ers have partial information, described by prior probability distributions over
types. Our objective is to design cost-sharing protocols that are BBiE and the
worst-case equilibria have low cost, i.e. the Bayesian PoA is minimized.

We show an interesting connection between algorithms for Oblivious Stochas-
tic optimization problems and cost-sharing design with low PoA. We exploit
this for both problems and we are able to enforce approximate solutions of the
stochastic problem, as Bayesian Nash equilibria, with the same guarantees on
the PoA. Although this connection is quite simple, it results in significant im-
provement on the PoA comparing to budget-balanced protocols. More precisely,
we map each player to a single specific strategy and charge very high costs for
any alternative strategy. In this way, their mapped strategy becomes a (strongly)
dominant strategy. For the set cover game, we enforce the oblivious solution given
by [20]. They apriori map each player i to some subset Fi ∈ F ; then, if i is sam-
pled, Fi should be in the induced solution. For the multicast game, the algorithm
of [17], for the online Steiner tree problem, provides an oblivious solution.

Budget-Balanced Protocols (Sect. 3). First, we provide lower bounds for
the PoA of budget-balanced protocols. It is not hard to see that there exists
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a set cover game that reduces to the lower bound of Chen, Roughgarden and
Valiant [6] for the multicast directed network games, resulting in PoA= Ω(n) in
the complete information case; we refer the reader to the full version of the paper
for this reduction. For the stochastic or Bayesian setting, where players are i.i.d.,
we show that the same lower bound holds, but a further analysis is needed. We
refer the reader to the full version of the paper for this reduction. Regarding the
multicast game, the PoA is O(1) for the complete information case [6] and the
stochastic case [10], [17]. However, we show that for the Bayesian setting there
is a lower bound of Ω(

√
n) (see Table 1.1 for a summary of the main results).

BBiE Protocols (Sect. 4). For the Bayesian (and stochastic) set cover game
there exists an ex-post3 BBiE protocol (determined in polynomial time) with PoA

O(log n), if m = poly(n), and O
(

logm
log logm−log logn

)
, if m� n. An ex-post BBiE

protocol also exists for the Bayesian multicast game resulting in constant PoA.

Posted Prices (Sect. 5). For the Bayesian (and stochastic) settings, ex-post
BBiE cannot be obtained by anonymous prices. Hence, we examine prices that
are ex-ante BBiE. In the full version of the paper, we discuss limitations of other
concepts, such as BBiE with “high” probability or bounded possible excess and
deficit. In Sect. 5 we present anonymous prices with the same upper bounds as
the BBiE protocols, for the unweighted set cover and for the multicast games,
respectively. We stress that oblivious solutions may not be sufficient to guarantee
low PoA for anonymous posted prices, in contrast to the BBiE protocols. This
is because it is not clear anymore how to enforce players to choose desirable
strategies, since anonymous prices are available to anyone. The reason that they
exist here is due to the specific properties of the oblivious solution.

Regarding the weighted set cover game, we can only provide semi-anonymous
prices with the same bounds; by semi-anonymous we mean that the prices for
each player do not depend on her identity, but only on her type. We leave the
case of anonymous prices as an open question. We remark that in all cases,
posted prices induce dominant strategies for the players. At last, for the poly-
time determinable prices, we give tight lower bounds.

Table 1. PoA of budget-balanced and BBiE protocols.

BB protocols BBiE protocols/posted prices

Set cover Undirected Set cover Undirected

Full information Θ(n) [6] O(1) [6] 1 1
Bayesian Ω(n) Ω(

√
n) O(n/ logn) O(1)

Prior-Independent Mechanisms. Clearly, the above BBiE protocols and
posted prices depend on the prior distribution. Prior-independent mechanisms
are also of high interest and in Sect. 6 we discuss their limitations.

3 In ex-post budget-balance we require budget-balance in every realization of the game.
If the expected excess and deficit are zero, the budget balance is called ex-ante.
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In the full version of the paper we further study the complete information
setting (see Table 1.1). Due to lack of space, we refer the reader to the full version
of the paper for all the missing proofs.

1.2 Related Work

There is a vast amount of research in cost-sharing games and so, we only mention
some of the most related. Moulin and Shenker [29] studied cost-sharing games
under mechanism design context. In similar context, other papers considered
(group)strategy proof and efficient mechanisms and relaxed the budget-balanced
constraint; Devanur, Mihail and Vazirani [12] and Immorlica, Mahdian and Mir-
rokni [24] studied the set cover game under this context showing positive and
negative bounds on the fraction of the cost that is covered.

Regarding the network design games, there is a long line of works mainly fo-
cusing on fair cost allocation originated by Anshelevich et al. [2]. They showed a
tight Θ(log k) bound on the PoS for directed networks, while for undirected net-
works the exact value of PoS still remains an open problem. For multicast games,
Li [28] proved an upper bound of O(log k/ log log k), while for broadcast games,
a constant upper bound is known due to Bilò, Flammini and Moscardelli [4].
Chen, Roughgarden and Valiant [6] were the first to study the design aspects
for this game, identifying the best protocol with respect to the PoA and PoS in
various cases, followed by [10], [13], [18]. The Bayesian Price of anarchy was first
studied in auctions by [8]; see also [30] for routing games, and [32] for the PoS
of Shapley protocol in cost-sharing games.

Close in spirit to our work is the notion of Coordination Mechanisms [7] which
provide a way to improve the PoA in cases of incomplete information. Similar to
our context, the designer has to decide in advance game-specific policies, without
knowing the exact input. Such mechanisms have been used for scheduling and
simple routing games, see [1], [3], [9] and the papers cited therein.

Posted prices have been used for pricing in large markets. Kelso and Crawford
[26] and Gul and Stacchetti [21] proved the existence of prices, for gross substi-
tute valuations, that clear the market efficiently. Pricing bundles for combina-
torial Walrasian equilibria was introduced by Feldman, Gravin and Lucier [15],
who showed that half of the social welfare can be achieved. In a follow-up work
[16], they considered Bayesian combinatorial auctions and they could guarantee
half of the optimum welfare, by using anonymous posted prices.

The underlying problems that we consider here, the set cover and the min-
imum Steiner tree problems, are well studied NP-complete problems. The best
known approximations are O(log(k)) [11] (by using a simple greedy algorithm)
and 1.39 [5]; in fact, for the set cover problem, Feige [14] showed that no im-
provement by a constant factor is likely. Research has been done regarding the
stochastic model, Grandoni et al. [20] showed a roughly O(log nm) tight bound
for the set cover problem and Garg et al. [17] gave bounds on the approximation
of the stochastic online Steiner tree problem. A slightly different distribution is
the independent activations; [31] and [10] demonstrated constant approximation
algorithms or the universal TSP problem and the multicast game, respectively.
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2 Model

Cost-Sharing Protocol. In the cost-sharing games, we consider that there
are k players who are interested in a set of resources, R = {r1, . . . , rm}. Each
resource r carries a cost cr. Whenever a subset of players uses a resource r, they
are charged some cost-share, defined by a cost-sharing (resource-specific) method
ξ. A cost-sharing protocol Ξ decides a cost-sharing method for each resource.
In accordance with previous works, [6], [10], [13], the following are some natural
properties that Ξ needs to satisfy:

– Stability: The induced game has always a pure Nash equilibrium.
– Separability: The cost shares of each resource r are completely determined

by the set of players that choose it.
– BBiE: In any pure (Bayes) Nash equilibrium profile, the cost shares of the

players choosing r should cover exactly the cost of r.

For the rest of the paper, by k we denote the number of players and by n the
number of different types of the players, i.e. in the set cover game, |U | = n, and
in the multicast game, |V | = n.

Information Models. We study several information models, from the point
of view of the designer and of other players, regarding the knowledge of players’
type. A player’s type is some resource: in the set cover game, it is some element
from U that needs to be covered, and in the multicast game, it is some vertex of
G, on which the player’s terminal lies, and requires connectivity with the root
t. The parameters of the game is known to both the protocol designer and the
participants. To be more specific, the tuple (U,F , c) in the set cover game and
the underlying (weighted) graph in the multicast game are commonly known.

The information models that we consider are the following:

– Complete Information: The types of the players are common knowledge, i.e.
they are known to all players and to the designer.

– Stochastic/A priori: The players’ types are drawn from some product distri-
bution D defined over the type set (U for set cover and V for multicast). The
actual types are unknown to the designer, who is only aware of D. However,
the players decide their strategies by knowing other players’ types.

– Bayesian: The players’ types are drawn from some product distribution D
defined over the type sets. Both the designer and the players know only
D. The players now decide their strategies by knowing only D and not the
actual types. A natural assumption is that every player knows her own type.

We assume that the players’ types are distributed i.i.d. (D = πk) and the
type of each player is drawn independently from some probability distribution
π : R → [0, 1], with

∑
r∈R π(r) = 1; R is either U in the set cover or V in the

multicast. For simplicity we write πr instead of π(r).
Price of Anarchy (PoA). Let opt(t) be the optimum solution given the

players’ types t, and NE(t) and BNE be the set of pure Nash equilibria and
pure Bayesian Nash equilibria, respectively. We denote the cost of any solution
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A as c(A). Then, the Price of Anarchy (PoA) for the complete information,
stochastic and Bayesian settings is defined, respectively, as:

PoA = max
t

s∈NE(t)

c(s)

c(opt(t))
; PoA = max

D

Et∼D[maxs∈NE(t) c(s)]

Et∼D[c(opt(t))]
;

PoA = max
D,s∈BNE

Et∼D,s(t)[c(s(t))]

Et∼D[c(opt(t))]
.

3 Lower Bounds for Budget-Balanced Protocols

Theorem 1. The Bayesian or stochastic PoA of any budget-balanced protocol,
for the unweighted set cover game, is Ω(n).

Proof. Consider n players and n elements/types U = (1, . . . , n) and the family of
sets F = {F1 = {1}, F2 = {2}, . . . Fn = {n}, Fall = U} with unit costs. Suppose
that π is the uniform distribution over U . Then the probability that element i is
drawn as the type of at least one player is qi = 1−

(
1− 1

n

)n ≥ 1− 1
e . By using

any budget-balanced protocol, it is a (Bayes) Nash equilibrium if each player of
type i chose set Fi. Her cost-share does not exceed 1, while by deviating to Fall
her cost-share becomes 1. The expected cost of that equilibrium is nqi = Ω(n),
whereas the optimum solution (all players choose the set Fall) has cost 1. ut

Theorem 2. The Bayesian PoA of any budget-balanced protocol, for the multi-
cast game, is Ω(

√
n).

Proof. Consider the graph of Fig. 1. We set p = 1 −
(

1− 1√
n

) 1
n

, such that

the probability that vertex vi is drawn as the type of at least one player is
qi = 1 − (1− p)n = 1√

n
. We claim that, for any budget-balanced protocol, it is

a Bayes-Nash equilibrium if any player with type vi uses the direct edges (vi, t).
Indeed, if player i uses any other path (vi, v, vj , t) her cost-share will be at least

t pt = 1− np

v1p v2p vn p

v pv = 0

1

1√
n

1

1√
n

1

1√
n

Fig. 1. Lower bound on the PoA of any budget-balanced protocol.

2√
n

+ (1 − qj) = 1 + 1√
n

, which is greater than her current cost-share of at

most 1. The expected social cost and optimum are: E[SC] =
∑
i qi =

√
n and

E[Opt] ≤
∑
i qi ·

1√
n

+ 1 = n 1
n + 1 = 2. So, the Bayes PoA is at least 1

2

√
n. ut
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4 BBiE Protocols

In this section we drop the requirement of budget balance and instead we con-
sider a more general class of cost-sharing protocols C, where the requirement is
to preserve the budget balance in the equilibrium. For the rest of the paper, by
h we denote a very high value with respect to the parameters of the game. h
should be larger than the total cost-share of any player by using any budget-
balanced protocol. It is safe to assume that h >

∑
r∈R cr. For the set cover game

it is sufficient that h > maxj cFj
. To show our results we will use known oblivi-

ous algorithms of the corresponding optimization problems and we will enforce
their solution by applying appropriate cost-sharing protocols (or posted prices
in Sect. 5); e.g. choices, not consistent with this solution, are highly expensive.

The types of the players correspond to the input components of the problem,
and the set of the resources are the domain of players action space. An obliv-
ious algorithm assigns an action for each input component, based on the prior
distribution, and independently of the realization of all other input components.
Take as an example, the multicast game, where the actions of an input (source)
corresponds to the paths connecting the source to the root. An oblivious solu-
tion, maps each vertex to some path that connects it to the root, and is used in
any realization of the input that contains this source.

Theorem 3. Let G be any cost-sharing game and Π the underlying optimization
resource allocation problem. Given any oblivious algorithm of Π with approxima-
tion ratio ρ, there exists a cost-sharing protocol Ξ ∈ C for G with PoA= O(ρ).

The following corollaries hold for both the Bayesian and the stochastic setting.
Set Cover Game. Grandoni et al. [20] studied the stochastic problem, and

they showed two mapping algorithms for the oblivious set cover problem (one
for the unweighted problem which is length-oblivious and one for the unweighted
problem which is length-oblivious), which are almost O(logmn)-competitive.
Theorem 3 implies the following corollary.

Corollary 4. In the unweighted and weighted set cover game, there exist length-
oblivious protocol Ξ1 ∈ C and length-aware protocol Ξ2 ∈ C, respectively, both
computed in polynomial time, and with PoA of O(log n), if m = poly(n), and

O
(

logm
log logm−log logn

)
, if m� n.

Multicast Game. Garg et al. [17] showed a constant approximation on
the online Steiner tree problem. The idea is the following: sample a set S from
the distribution πk over the vertices and construct a minimum Steiner tree (or a
constant approximation). Then connect each other vertex with its nearest vertex
from S via shortest path. That way we end up with a spanning tree T (standard
derandomization techniques can apply [10], [31], [33]). T defines a single path
from each vertex to the root and this is an oblivious strategy for each players’
type. By using Theorem 3 and any constant approximation of the minimum
Steiner tree (the best known is by [5]), the following corollary holds.

Corollary 5. In the multicast game, there exists Ξ ∈ C with PoA = O(1).
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5 Posted Prices

In this section, we show how to set anonymous or semi-anonymous prices for the
resources. Ex-post BBiE cannot be obtained by using anonymous posted prices.
Instead, we require ex-ante BBiE. For the rest of the section we define kA to
be the expected number of players having type in A and k1A to be the expected
number of players having type in A, given there exists at least one such player:

kA = Et[|i : ti ∈ A|] = k
∑
i∈A

πi ;

k1A = Et[|i : ti ∈ A| given |i : ti ∈ A| ≥ 1] =
k
∑
i∈A πi

1−
(
1−

∑
i∈A πi

)k . (1)

Set Cover Game. To determine anonymous prices for the unweighted set
cover game, we first state Lemma 6 to be used in stability arguments.

Lemma 6. For any a > b > 0 and integer k ≥ 2, a
1−(1−a)k >

b
1−(1−b)k .

Proposition 7. In the unweighted set cover game, there exist length-oblivious
and anonymous prices (computed in polynomial time) with PoA O(log n), if

m = poly(n), and O
(

logm
log logm−log logn

)
, if m� n.

Proof. In order to set the prices, we run the greedy algorithm of [11] and at each
step we set the price for the selected set. Algorithm 1 describes this procedure.

ALGORITHM 1: Bayesian posted prices.

Input: (U,F).
while U 6= ∅ do

let F ← set in F maximizing
∑

i∈F∩U πi;
set the price for F to 1

k1
F∩U

; Let U ← U \ F .

end
Set the price of all other sets to h.

We first argue that there exists a unique Bayes-Nash equilibrium, where each
player i chooses the set picked earlier by Algorithm 1 and covers her. For that it is
sufficient to show that for any two sets A and B, such that

∑
i∈A πi >

∑
i∈B πi,

k1A > k1B . From (1), we need to show that
k
∑

i∈A πi

1−(1−
∑

i∈A πi)
k >

k
∑

i∈B πi

1−(1−
∑

i∈B πi)
k ,

which is true due to Lemma 6, by setting a =
∑
i∈A πi and b =

∑
i∈B πi; note

that for k = 1, there exists only one player and this is a trivial case.
Next notice that, given that a set F is chosen by some player, the expected

number of players paying for it is k1F , resulting in ex-ante BBiE. As for the PoA,
Grandoni et al. [20] analyzed the performance of Algorithm 1, for the stochastic
problem. They didn’t consider any prices, instead they mapped each player to
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the first set considered by the algorithm and they used the mapping in order to
form a set cover. Their cover though coincide with the equilibrium solution and
therefore their results immediately provide bounds on the PoA. ut

Proposition 8. In the weighted set cover game, there exist length-aware and
semi-anonymous prices (computed in polynomial time) with PoA O(log n), if

m = poly(n), and O
(

lognm
log logm−log logn

)
, if m� n.

Proposition 9. For k = Ω(n), there are no anonymous prices for the un-
weighted set cover, or semi-anonymous prices for the weighted set cover, with

PoA= o
(

logm
log logm−log logn

)
, for m � n. Moreover, there are no such prices

computed in poly-time, with PoA= o(log n) for m = poly(n), unless NP ⊆
DTIME(nO(log logn)).

Multicast Game. We construct a spanning tree T in the same way as in
Sect. 4 and we use it to set the posted prices (computed in polynomial time).

Proposition 10. In the multicast game, there exist prices with PoA= O(1).

Proof. For each edge e ∈ E(T ), let V (e) be the set of vertices that are discon-
nected from the root t in T \{e}. We set the price for each e ∈ E(T ) as ce/k

1
V (e).

For each e /∈ E(T ), the price is set to h. In the equilibrium each player chooses
the path that connects her terminal with t via T . The constant PoA follows by
[17] and the approximation of [5]. The expected total prices for e ∈ E(T ) is
k1V (e)ce/k

1
V (e) = ce, if e is used, and 0 otherwise, resulting in ex-ante BBiE. ut

6 Prior-Independent Mechanisms

The design of prior-independent mechanisms is a more difficult task, as the ob-
jective now is to identify a single mechanism that always has good performance,
under any distributional assumption. In this section, we show limitations of prior-
independent mechanisms even for the restricted class of i.i.d. prior distributions.

BBiE Protocols. Satisfying BBiE with prior-independent protocols highly
restricts the class of cost-sharing protocols and seems hard for natural classes of
distribution, e.g. i.i.d., to find ex-post BBiE protocols with low PoA.

Proposition 11. In the weighted set cover game, any prior-independent, ex-
post BBiE protocol Ξ ∈ C has PoA= Ω(

√
n).

Proof. Consider n players, n+1 elements/types U = {0, 1, . . . , n} and the family
of sets F = {F0, F1, . . . Fn, Fall}, with Fj = {j}, cFj

= 1 for all j, and Fall =
{1, . . . , n}, cFall

=
√
n. Note that 0 is covered only by F0, serving as dummy set.

Given a BBiE, prior-independent protocol Ξ, suppose that there exists some
Fj , j 6= 0, where Ξ is not budget-balanced, i.e. there exists a set of players S,
such that if only S chooses Fj , the sum of their cost-shares are different from 1.
Consider the prior distribution D1 = πn with π(0) = π(j) = 1/2 and π(j′) = 0
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for any j′ /∈ {0, j}. With positive probability, 1/2n, all player of S have type j
and all other players have type 0. If all players of S choose Fj in any pure Bayes-
Nash equilibrium, ex-post BBiE is violated. So, there exists a player choosing
Fall (and this happens with probability 1/2) which results in PoA= Ω(

√
n).

Suppose now that Ξ is budget-balanced for any Fj , where j 6= 0. Let I be
the set of players such that whenever i ∈ I is the only player choosing Fall, Ξ
doesn’t charge

√
n to i. Consider the prior distribution D2 = πn with π(0) = 1/2

and π(j) = 1/2n for all other j. With positive probability, 1/(2nn), player i’s
type is some j 6= 0 and all other players’ type is 0. If for any type j 6= 0 player i
chooses Fall in any Bayes-Nash equilibrium, ex-post BBiE is violated.

We claim that the strategy profile, where any player i with type ti chooses
Fti is a Bayes-Nash equilibrium. For any player i ∈ I there is no other valid
strategy. For each player i /∈ I, whenever ti 6= 0, player i always pays at most 1
(due to budget balanced in Fti), whereas if she deviates to Fall she pays

√
n.

Each element j 6= 0 is a type of a player with probability 1−
(
1− 1

2n

)n ≥ 1− 2
e ,

giving an expected cost of Ω(n) in the equilibrium. The expected optimum is at
most 1 +

√
n by using only F0 and Fall and so PoA= Ω(

√
n). ut

Posted Prices. Setting posted prices in the adversarial model cannot guar-
antee any budget-balance in equilibrium, even ex-ante. Consider the set cover
game (similar example exists for the multicast game) with n players, n elements
and two subsets of unit costs, one containing element 1 and the other containing
the rest. Suppose now that we post a price q for the first subset. If q ≤ 1/

√
n,

for the uniform prior distribution, the expected number of players with type 1,

given that there exists at least one, is n·1/n
1−(1−1/n)n ≤

e
e−1 . The expected cost

shares for the first set are O(1/
√
n), meaning that its cost is undercovered by a

factor of Ω(
√
n). If q > 1/

√
n, consider the prior D = πn, where π(1) = 1 and

π(j) = 0 for all j 6= 1. All players choose the first set and their total shares are
n · 1/

√
n =

√
n which exceeds the set’s cost by a factor of

√
n. So, there is no

way to avoid an over/under-charge of a resource by a factor better than Θ(
√
n).
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