We demonstrate how time-integration of stochastic differential equations
(i.e. Brownian dynamics simulations) can be combined with continuum numerical
bifurcation analysis techniques to analyze the dynamics of liquid crystalline
polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the
approach analyzes the (unavailable in closed form) coarse macroscopic
equations, estimating the necessary quantities through appropriately
initialized, short bursts of Brownian dynamics simulation. Through this
approach, both stable and unstable branches of the equilibrium bifurcation
diagram are obtained for the Doi model of LCPs and their coarse stability is
estimated. Additional macroscopic computational tasks enabled through this
approach, such as coarse projective integration and coarse stabilizing
controller design, are also demonstrated