493 research outputs found

    DC-AC Cascaded H-Bridge Multilevel Boost Inverter with No Inductors for Electric/Hybrid Electric Vehicle Applications

    Get PDF
    This paper presents a cascaded H-bridge multilevel boost inverter for electric vehicle (EV) and hybrid EV (HEV) applications implemented without the use of inductors. Currently available power inverter systems for HEVs use a dc–dc boost converter to boost the battery voltage for a traditional three-phase inverter. The present HEV traction drive inverters have low power density, are expensive, and have low efficiency because they need a bulky inductor. A cascaded H-bridge multilevel boost inverter design for EV and HEV applications implemented without the use of inductors is proposed in this paper. Traditionally, each H-bridge needs a dc power supply. The proposed design uses a standard three-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg which uses a capacitor as the dc power source. A fundamental switching scheme is used to do modulation control and to produce a five-level phase voltage. Experiments show that the proposed dc–ac cascaded H-bridge multilevel boost inverter can output a boosted ac voltage without the use of inductors

    Fundamental Frequency Switching Strategies of a Seven-Level Hybrid Cascaded H-Bridge Multilevel Inverter

    Get PDF
    This paper presents a cascaded H-bridge multilevel inverter that can be implemented using only a single dc power source and capacitors. Standard cascaded multilevel inverters require n dc sources for 2n + 1 levels. Without requiring transformers, the scheme proposed here allows the use of a single dc power source (e.g., a battery or a fuel cell stack) with the remaining n − 1 dc sources being capacitors, which is referred to as hybrid cascaded H-bridge multilevel inverter (HCMLI) in this paper. It is shown that the inverter can simultaneously maintain the dc voltage level of the capacitors and choose a fundamental frequency switching pattern to produce a nearly sinusoidal output. HCMLI using only a single dc source for each phase is promising for high-power motor drive applications as it significantly decreases the number of required dc power supplies, provides high-quality output power due to its high number of output levels, and results in high conversion efficiency and low thermal stress as it uses a fundamental frequency switching scheme. This paper mainly discusses control of seven-level HCMLI with fundamental frequency switching control and how its modulation index range can be extended using triplen harmonic compensation

    A Five-Level Three-Phase Hybrid Cascade Multilevel Inverter Using a Single DC Source for a PM Synchronous Motor Drive

    Get PDF
    The interest here is in using a single DC power source to construct a 3-phase 5-level cascade multilevel inverter to be used as a drive for a PM traction motor. The 5-level inverter consists of a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg, which use a capacitor as a DC source. It is shown that one can simultaneously maintain the regulation of the capacitor voltage while achieving an output voltage waveform which is 25% higher than that obtained using a standard 3-leg inverter by itself

    Upravljanje asimetričnim inverterom ujednačenog koraka s 13 razina korištenjem optimizacije roja čestica

    Get PDF
    Harmonic Elimination Strategy (HES) has been a widely researched alternative to traditional PWM techniques. This paper presents the harmonic elimination strategy of a Uniform Step Asymmetrical Multilevel Inverter (USAMI) using Particle Swarm Optimization (PSO) which eliminates specified higher order harmonics while maintaining the required fundamental voltage. This method can be applied to USAMI with any number of levels. As an example, in this paper a 13-level USAMI is considered and the optimum switching angles are calculated to eliminate the 5th, 7th, 11th, 13th and 17th harmonics. The HES-PSO approach is compared to the well-known Sinusoidal Pulse-Width Modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the HES-PSO controller in feeding an asynchronous machine. Indeed, the harmonic distortions are efficiently cancelled providing thus an optimized control signal for the asynchronous machine. Moreover, the technique presented here substantially reduces the torque undulations.Strategija eliminacije harmonika je dobro istražena alternativa tradicionalnoj pulso-širinskoj modulaciji. U ovom radu opisana je strategija eliminacije harmonika asimetričnog višerazinskog invertera ujednačenog koraka uz korištenje optimizacije roja čestica čime se eliminiraju harmonici višeg reda uz zadržavanje fundamentalnog napona. Takva metoda može se primijeniti neovisno o broju razina invertera. Kao primjer korišten je inverter s 13 razina kod kojeg se eliminiraju peti, sedmi, jedanaesti, trinaesti i sedamnaesti harmonik. Predloženo rješenje uspoređeno je s dobro poznatom sinusnom pulsno-širinskom modulacijom. Simulacijski rezultati pokazuju prednosti predloženog rješenja. Harmonička distorzija je uspješno poništena te je upravljački signal za asinkroni stroj optimalan. Štoviše, predložena tehnika znatno smanjuje promjene momenta

    Effects of Prandial Versus Fasting Glycemia on Cardiovascular Outcomes in Type 2 Diabetes: The HEART2D trial

    Get PDF
    OBJECTIVE—Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) is a multinational, randomized, controlled trial designed to compare the effects of prandial versus fasting glycemic control on risk for cardiovascular outcomes in patients with type 2 diabetes after acute myocardial infarction (AMI)

    Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae)

    Get PDF
    The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions

    Effects of Prandial Versus Fasting Glycemia on Cardiovascular Outcomes in Type 2 Diabetes: The HEART2D trial

    Get PDF
    OBJECTIVE—Hyperglycemia and Its Effect After Acute Myocardial Infarction on Cardiovascular Outcomes in Patients With Type 2 Diabetes Mellitus (HEART2D) is a multinational, randomized, controlled trial designed to compare the effects of prandial versus fasting glycemic control on risk for cardiovascular outcomes in patients with type 2 diabetes after acute myocardial infarction (AMI)

    Impaired Collateral Recruitment and Outward Remodeling in Experimental Diabetes

    Get PDF
    OBJECTIVE—In this study, the effect of chronic hyperglycemia on acute ligation-induced collateral vasodilation, on monocyte chemotaxis, and on structural outward remodeling of collaterals was investigated
    corecore