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DC-AC Cascaded H-Bridge Multilevel Boost

Inverter With No Inductors for Electric/Hybrid
Electric Vehicle Applications

Zhong Du, Member, IEEE, Burak Ozpineci, Senior Member, IEEE,
Leon M. Tolbert, Senior Member, IEEE, and John N. Chiasson, Senior Member, IEEE

Abstract—This paper presents a cascaded H-bridge multilevel
boost inverter for electric vehicle (EV) and hybrid EV (HEV)
applications implemented without the use of inductors. Currently
available power inverter systems for HEVs use a dc—dc boost
converter to boost the battery voltage for a traditional three-phase
inverter. The present HEV traction drive inverters have low power
density, are expensive, and have low efficiency because they need
a bulky inductor. A cascaded H-bridge multilevel boost inverter
design for EV and HEV applications implemented without the
use of inductors is proposed in this paper. Traditionally, each
H-bridge needs a dc power supply. The proposed design uses
a standard three-leg inverter (one leg for each phase) and an
H-bridge in series with each inverter leg which uses a capacitor as
the dc power source. A fundamental switching scheme is used to
do modulation control and to produce a five-level phase voltage.
Experiments show that the proposed dc-ac cascaded H-bridge
multilevel boost inverter can output a boosted ac voltage without
the use of inductors.

Index Terms—Cascaded H-bridge multilevel boost inverter,
electric vehicle (EV)/hybrid electric vehicle (HEV).

1. INTRODUCTION

ECENTLY, because of increasing oil prices and envi-
ronmental concerns, hybrid electric vehicles (HEVs) and
electric vehicles (EVs) are gaining increased attention due to
their higher efficiencies and lower emissions associated with the
development of improved power electronics [1]-[3] and motor
technologies [4]-[9]. An HEV typically combines a smaller
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internal combustion engine of a conventional vehicle with a
battery pack and an electric motor to drive the vehicle. The
combination offers lower emissions but with the power range
and convenient fueling of conventional (gasoline and diesel)
vehicles. An EV typically uses rechargeable batteries and an
electric motor. The batteries need to be charged regularly.

Both HEVs and EVs need a traction motor and a power
inverter to drive the traction motor. The requirements for the
power inverter include high peak power and low continuous
power rating. Currently available power inverter systems for
HEVs use a de—dc boost converter to boost the battery voltage
for a traditional three-phase inverter. If the motor is running at
low to medium power, the dc—dc boost converter is not needed,
and the battery voltage will be directly applied to the inverter to
drive the traction motor. If the motor is running in a high power
mode, the dc—dc boost converter will boost the battery voltage
to a higher voltage, so that the inverter can provide higher power
to the motor. Present HEV traction drive inverters have low
power density, are expensive, and have low efficiency because
they need bulky inductors for the dc—dc boost converters.
To achieve a boosted output ac voltage from the traditional
inverters for HEV and EV applications, the Z-source inverter
is proposed, which also requires an inductor [10].

A cascaded H-bridge multilevel boost inverter shown in
Fig. 1 for EV and HEV applications is described in this paper.
Traditionally, each H-bridge of a cascaded multilevel inverter
needs a dc power supply [4]-[6]. The proposed cascaded
H-bridge multilevel boost inverter uses a standard three-leg
inverter (one leg for each phase) and an H-bridge in series
with each inverter leg which uses a capacitor as the dc power
source [11]-[14]. In this topology, the need for large inductors
is eliminated. A fundamental switching scheme is used to do
modulation control and to output five-level phase voltages.
Experiments show that the proposed dc—ac cascaded H-bridge
multilevel boost inverter without inductors can output a boosted
ac voltage.

II. WORKING PRINCIPLE OF CASCADED H-BRIDGE
MULTILEVEL BOOST INVERTER WITHOUT INDUCTORS

The topology of the proposed dc—ac cascaded H-bridge
multilevel boost inverter is shown in Fig. 1. The inverter uses
a standard three-leg inverter (one leg for each phase) and an
H-bridge with a capacitor as its dc source in series with each
phase leg.

0093-9994/$25.00 © 2009 IEEE
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Fig. 1. Topology of the proposed dc—ac cascaded H-bridge multilevel boost

inverter.
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Fig. 2. Single phase of the proposed dc—ac cascaded H-bridge multilevel
boost inverter.

To see how the system works, a simplified single phase
topology is shown in Fig. 2. The output voltage v; of this
leg of the bottom inverter (with respect to the ground) is
either +Vg./2 (S5 closed) or —Vg./2 (S closed). This leg
is connected in series with a full H-bridge, which, in turn, is
supplied by a capacitor voltage. If the capacitor is kept charged
to Vg./2, then the output voltage of the H-bridge can take on
the values +Vj./2 (S and Sy closed), 0 (S; and S2 closed or
S3 and Sy closed), or —Vg./2 (S2 and S3 closed). An example
output waveform from this topology is shown in Fig. 3(a).
When the output voltage v = v + v» is required to be zero, one
can either set vy = +Vy./2 and vo = —Vy./2 or vy = —Vy. /2
and vy = +Vy./2.

Additional capacitor’s voltage regulation control detail is
shown in Fig. 3. To explain how the capacitor is kept charged,
consider the interval #; < 6 < m, the output voltage in Fig. 3(a)
is zero, and the current 7 > 0. If S; and S, are closed (so that
vy = +V4./2) and Sg is closed (so that v; = —Vj./2), then
the capacitor is discharging [i. = —¢ < 0; see Fig. 3(b)], and
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s i
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| 27
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=V, /27
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Fig. 3. Capacitor voltage regulation with capacitor charging and discharg-
ing. (a) Overall output voltage and load current. (b) Capacitor discharging.
(c) Capacitor charging.

v = 11 + 9 = 0. On the other hand, if S5 and S5 are closed (so
that vy = —Vy./2) and S5 is also closed (so that v; = +V4./2),
then the capacitor is charging [¢. = ¢ > 0; see Fig. 3(c)], and
v =v; +vp = 0. The case ¢ < 0 is accomplished by simply
reversing the switch positions of the ¢ > 0 case for charging and
discharging of the capacitor. Consequently, the method consists
of monitoring the output current and the capacitor voltage, so
that during periods of zero voltage output, either the switches
S1, Sy, and Sg are closed or the switches S5, S3, and Sj
are closed, depending on whether it is necessary to charge or
discharge the capacitor. It is this flexibility in choosing how to
make that output voltage zero that is exploited to regulate the
capacitor voltage.

The goal of using fundamental frequency switching modula-
tion control is to output a five-level voltage waveform, with a
sinusoidal load current waveform, as shown in Fig. 3(a). If the
capacitor’s voltage is higher than Vj./2, switches S5 and Sg

Authorized licensed use limited to: Boise State University. Downloaded on June 17, 2009 at 20:50 from IEEE Xplore. Restrictions apply.
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are controlled to output voltage waveform v, and the switches
S1, 52, S3, and Sy are controlled to output voltage waveform
V2, shown in Fig. 3(b). The highlighted part of the waveform in
Fig. 3(b) is the capacitor discharging period, during which the
inverter’s output voltage is 0 V.

If the capacitor’s voltage is lower than Vj./2, the switches
S5 and Sg are controlled to output voltage waveform v, and
switches Sp, So, S3, and Sy are controlled to output voltage
waveform v, shown in Fig. 3(c). The highlighted part of the
waveform in Fig. 3(c) is the capacitor charging period, when
the inverter’s output voltage is 0 V. Therefore, the capacitors’
voltage can be regulated by alternating the capacitor’s charging
and discharging control, when the inverter output is O V.

This method of regulating the capacitor voltage depends
on the voltage and current not being in phase. That is, one
needs positive (or negative) current when the voltage is passing
through zero in order to charge or discharge the capacitor.
Consequently, the amount of capacitor voltage the scheme can
regulate depends on the phase angle difference of output voltage
and current. In other words, the highest output ac voltage of the
inverter depends on the displacement power factor of the load.

III. SWITCHING CONTROL OF CASCADED H-BRIDGE
MULTILEVEL BOOST INVERTER WITHOUT INDUCTORS

There are several kinds of modulation control methods
such as traditional sinusoidal pulsewidth modulation (SPWM),
[15]-[19], space vector PWM [20], harmonic optimization or
selective harmonic elimination [21]-[28], and active harmonic
elimination [29], and they all can be used for inverter modu-
lation control. For the proposed dc—ac boost inverter control,
a practical modulation control method is the fundamental fre-
quency switching control for high output voltage and SPWM
control for low output voltage, which only uses the bottom
inverter. In this paper, the fundamental frequency switching
control is used.

The Fourier series expansion of the fundamental frequency
(staircase) output voltage waveform of the multilevel inverter,
as shown in Fig. 3(a), is

o0
2

n=1,3,5,..

4 VdC

V(wt)= (cos(nby)+cos(nbs)) sin(nwt).

ey

The key issue of fundamental frequency modulation control
is choice of the two switching angles 6, and 65. In this paper,
the goal is to output the desired fundamental frequency voltage
and to eliminate the fifth harmonic. Mathematically, this can be
formulated as the solution to the following:

cos(61) + cos(62) =m,
cos(507) + cos(562) =0. 2)

This is a system of two transcendental equations with two
unknowns 6; and 6., and m, is the output voltage index.
Traditionally, the modulation index is defined as

i

Switching angle (Degree)

I I

I I

1 1

08 1 12 14 16 18 2
Modulation index

Fig. 4. Switching angle solutions for proposed dc—ac cascaded H-bridge
multilevel boost inverter control.

Therefore, the relationship between the modulation index m
and the output voltage index m,, is

M. “4)

4
m= —
™

There are many ways one can solve (2) for the angles. Here,
the resultant method is used to find the switching angles. A
practical solution set is shown in Fig. 4, which is continuous
from modulation index 0.75 to 2.42 [26].

Although it can be seen from Fig. 4 that the modulation
index range for the five-level fundamental frequency switching
control method can reach 2.42, which is double that of the
traditional power inverter, it requires the capacitors’ voltage to
be kept constant at Vg /2.

Traditionally, the maximum modulation index for the linear
operation of a traditional full-bridge bilevel inverter using
SPWM control method is 1 (without third harmonic compen-
sation) and 1.15 (with third harmonic compensation, and the
inverter output voltage waveform is an SPWM waveform, not
a square waveform). With the cascaded H-bridge multilevel
inverter, the maximum modulation index for linear operation
can be as high as 2.42; however, the maximum modulation
index depends on the displacement power factor, as will be
shown in the next section.

IV. OUTPUT VOLTAGE BOOST

As previously mentioned, the cascaded H-bridge multilevel
inverter can output a boosted ac voltage to increase the output
power, and the output ac voltage depends on the displacement
power factor of the load. Here, the relationship of the boosted
ac voltage and the displacement power factor is discussed.

It is assumed that the load current displacement angle is ¢,
as shown in Fig. 5. To balance the capacitor voltage, the net
capacitor charging amount needs to be greater than the pure
discharging amount. That is, to regulate the capacitor’s voltage
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Fig. 5.

Capacitor charging and discharging cases.

with a fundamental frequency switching scheme, the following
must be satisfied:

s s

/icharging do — /idischarging do > 0. (5)
0 0

The charging and discharging of the current with an induc-
tance load can be classified into three cases. The fundamental
of the inductive load current is given by

i = Isin(wt — @) (6)

and the displacement power factor is

pf = cos(p). (7
The three cases are as follows.
D0 p<o;
@ 04 by m—02
/|i\d¢9+/z’d0+ /id&— /id9>0. )
0 ® 01 02
2) 01 <p< b,
04 g T—02
/|i|d0+ / 1df — / idf > 0. 9)
0 7\'791 02
3) o < p<m/2
0, T m—02
/|i|d9+ / ido — / id0 > 0. (10)

0 T—01 05

Combining (6)—(10), it can be concluded that, for 0 <
p <6

™

pf < T (11)
and, for §; < p < m/2.
pf < cos [tan1 (C?S(@g))] . (12)
sin(67)

Therefore, the conditions for the fundamental frequency
switching scheme to eliminate the fifth harmonic and to regulate
the capacitor’s voltage are (11) and (12).

Angle (Degree)

Modulation index

Fig. 6. Minimum phase displacement angle.

25 T T T
I |

2 _______

Modulation index

Displacement power factor

Fig. 7. Displacement power factor and output voltage modulation index.

For practical applications, direct use of (11) and (12) is not
convenient. Using minimum phase displacement angles is a
more convenient way to use (11) and (12). That means that,
if the phase displacement angle is greater than the minimum
angle, the voltage can be regulated anyway.

Fig. 6 shows the minimum phase displacement angle com-
puted by (5)—(12). From the figure, it can be seen that, for mod-
ulation index range m < 1.27 (the inverter output is a five-level
waveform, not a bilevel or square waveform), the minimum
phase angle displacement is zero, which means that the capaci-
tor’s voltage can be regulated for all displacement power factors
in this modulation index range. For modulation index range
m > 1.27, the required minimum phase displacement angle is
shown in Fig. 6. Fig. 6 also shows the two switching angles.

The phase displacement power factor versus the output volt-
age modulation index is shown in Fig. 7.

It can be derived from Fig. 7 that the highest output voltage
modulation index depends on the displacement power factor.
The inverter can regulate the capacitor’s voltage with a dis-
placement power factor of one if the modulation index is below
1.27; if the modulation index is above 1.27, the displacement
power factor must be less than a specified amount. For practical
applications, the highest output voltage is determined when the
load is determined.

As mentioned previously, there are many methods to do
modulation control for the proposed dc—ac cascaded H-bridge
multilevel boost inverter without inductors. The fundamental
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Fig. 8.
setup.

frequency method with regulated Vg./2 capacitor voltage is
only one of the possible methods to output continuous power.
The traditional SPWM method can also be applied to this
inverter to boost the output voltage with a lower maximum
continuous output power and high switching loss but better
THD for a lower output frequency range. It is also possible
to use SPWM for low output frequency low output voltage
conditions and staircase waveform for high output frequency
high output voltage range to achieve optimal performances with
maximum continuous output power, lower switching loss, and
lower THD. It can also be seen that accurate load inductance is
not required for controller design, and the controller is robust
independent of the leakage inductance of stator windings. For
HEV and EV applications, sometimes, only short period peak
power is required. The modulation control can store energy to
the capacitors by boosting the capacitor voltage to a higher
voltage, which could be higher than V4. when the vehicle is
working in a low power mode. When the vehicle is working
in high power modes, the capacitors will deliver much higher
power than the continuous power to the motor load combined
with the battery, fuel cell, or generator. This feature will greatly
improve the vehicle’s dynamic (acceleration) performance.

V. EXPERIMENTAL IMPLEMENTATION AND VALIDATION

To experimentally validate the proposed control scheme,
a prototype 5-kW three-phase cascaded H-bridge multilevel

(b)

(d)

(a) Five-kilowatt dc—ac cascaded H-bridge multilevel boost inverter prototype. (b) FPGA controller. (c) Block diagram of FPGA controller. (d) Bench

converter has been built using 100-V 180-A MOSFETs as the
switching devices [shown in Fig. 8(a)]. A real-time variable-
output-voltage variable-frequency three-phase motor drive con-
troller based on an Altera FLEX 10 K field programmable
gate array (FPGA) is used to implement the control algorithm.
For convenience of operation, the FPGA controller is designed
as a card to be plugged into a personal computer, shown in
Fig. 8(b), which uses a peripheral component interconnect bus
to communicate with the microcomputer. To maintain the ca-
pacitors’ voltage balance, a voltage sensor is used to detect the
capacitors’ voltage and feed the voltage signal into the FPGA
controller. The FPGA controller will output the corresponding
switching signals according to the capacitor’s voltage. A 15-hp
induction motor was used to load the inverter, and the motor
was loaded to less than 5 kW in the experiments. The block
diagram of the FPGA controller is shown in Fig. 8(c). The
whole bench setup is shown in Fig. 8(d).

The switching signal data are stored in a 12 x 1024-b on-
chip RAM. An oscillator generates a fixed frequency clock
signal, and a divider is used to generate the specified control
clock signal corresponding to the converter output frequency.
Three-phase address generators share a public switching data
RAM because they have the same switching data with only
a different phase angle. (Because the switching data are sym-
metric, the switching data are only for one half cycle.) For
each step, the three-phase signal controller controls the ad-
dress selector to fetch the corresponding switching data from
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Fig. 9. Phase voltage waveform, line-line voltage waveform, and current
waveform with 15-hp induction motor load (m = 2.03, and f = 60 Hz).
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Fig. 10. Normalized FFT analysis of phase voltage.

the RAM to the output buffer according to the capacitor’s
voltage.

Fig. 9 shows the output phase voltage waveform, line—line
voltage waveform, and phase current waveform with an output
frequency of 60 Hz. The modulation index of the output voltage
is 2.03, and the capacitors’ voltage is regulated to Vj./2. The
phase voltage waveform shows that the output voltage has five
levels, the line-line voltage has nine levels, and the phase
current is a near-sinusoidal waveform.

Fig. 10 shows the normalized fast Fourier transform (FFT)
analysis of the phase voltage, and that the fifth harmonic is very
low (below 1%). Fig. 11 shows the normalized FFT analysis
of the phase current, which also has a very low fifth harmonic
content of 0.3%.

The experimental results and their FFT analysis all verified
the performance of the fundamental frequency switching con-
trol. The modulation index in this experiment is from 0 to 2.03,
which is much wider than the normal modulation index range
0-1.15 for traditional standard three-leg inverters.

To further test the cascaded multilevel boost inverter, ex-
periments with load current versus modulation indexes with
different fundamental frequencies were performed to achieve

; T T T T T
| : : | | |
! 1 ! | |
0.06 1l -__-Fundamental frequency ____ [ |
© | | i i | i
'g | 1 1 | | |
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Fig. 11. Normalized FFT analysis of phase current.
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Fig. 12. Load current versus modulation index with different fundamental
frequencies.

the highest output voltages. These were implemented by
using an R-L load bank and compared to a traditional
inverter.

For these experiments, the R—L load was fixed, the modula-
tion index was changed with different fundamental frequencies,
and the load currents were recorded. The load current curves for
frequencies 60, 100, 150, and 200 Hz are shown in Fig. 12.

Fig. 12 shows that, in the working range of the cascaded
multilevel boost inverter without inductors, the load current and
the modulation index are linear. This feature is similar to the
traditional inverter and allows easy implementation for practical
applications.

In this experiment, to achieve the highest output voltages for
the cascaded multilevel boost inverter without inductors and
the traditional inverter, two steps were involved. First, the load
was connected to the bottom traditional inverter to output its
highest voltage; second, the load was connected to the cascaded
H-bridge multilevel inverter with the same dc power supply
voltage. The output voltages for the two cases are shown in
Table 1.

Table I shows that the highest output voltage of the cascaded
H-bridge multilevel inverter is much higher than that of the
traditional inverter. The voltage boost ratio is higher than 1.4 for
the whole testing frequency range.
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TABLE 1
HIGHEST OUTPUT VOLTAGE FOR TRADITIONAL INVERTER AND
CASCADED H-BRIDGE MULTILEVEL INVERTER (DC BUS Is 40 V)

Test Traditional Cascaded H-bridge B
. . . 00st
frequency | inverter output | multilevel inverter catio
(Hz) voltage (V) output voltage (V)
200 23.1 42.8 1.85
150 23.1 422 1.82
100 23.1 41.2 1.78
60 23.1 377 1.63
40 23.1 33.1 1.43

Table I also shows that the highest output voltage of the
inverter is decreasing when the frequency is decreasing; this is
because the impedance of the inductor is decreasing. Another
issue is that the boost voltage ratio is decreasing when the
frequency is decreasing; this is because the power factor is
increasing for the fixed R—L load.

VI. CONCLUSION

The proposed cascaded H-bridge multilevel boost inverter
without inductors uses a standard three-leg inverter (one leg for
each phase) and an H-bridge in series with each inverter leg. A
fundamental switching scheme is used for modulation control,
to output five-level phase voltages. Experiments show that the
proposed dc—ac cascaded H-bridge multilevel boost inverter can
output a boosted ac voltage with the same dc power supply,
which has a wider modulation index range than a traditional
inverter. The application of this dc—ac boost inverter on HEV
and EV can result in the elimination of the bulky inductor of
present dc—dc boost converters, thereby increasing the power
density.
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