170 research outputs found

    Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors

    Full text link
    By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.Comment: 4 pages, 3 figure

    Improving the reliability of material databases using multiscale approaches

    Full text link
    This article addresses the propagation of constitutive uncertainties between scales occurring in the multiscale modelling of fibre-reinforced composites. The amplification of such uncertainties through upward or downward transitions by a homogenisation model is emphasized and exemplified with the Mori-Tanaka model. In particular, the sensitivity to data uncertainty in the inverse determination of constituent parameters based on downward transitions is stressed on an example. Then a database improvement method, which exploits simultaneously the available information on constitutive uncertainties at all scales instead of just propagating those associated with one scale, is presented and shown to yield substantial reductions in uncertainty for both the constitutive parameters and the response of structures. The latter finding is demonstrated on two examples of structures, with significant gains in confidence obtained on both

    Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome

    Get PDF
    The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris

    A new phase in the production of quality-controlled sea level data

    Get PDF
    Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us on ocean circulation variations in response to natural climate modes such as El Niño and the Pacific Decadal Oscillation, and anthropogenic forcing. Comparing numerical climate models to a consistent set of observations enables us to assess the performance of these models and help us to understand and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL_cci) merges data from nine different altimeter missions in a clear, consistent and well-documented manner, selecting the most appropriate satellite orbits and geophysical corrections in order to further reduce the error budget. This paper summarises the corrections required, the provenance of corrections and the evaluation of options that have been adopted for the recently released v2.0 dataset (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). This information enables scientists and other users to clearly understand which corrections have been applied and their effects on the sea level dataset. The overall result of these changes is that the rate of rise of global mean sea level (GMSL) still equates to ∼ 3.2 mm yr−1 during 1992–2015, but there is now greater confidence in this result as the errors associated with several of the corrections have been reduced. Compared with v1.1 of the SL_cci dataset, the new rate of change is 0.2 mm yr−1 less during 1993 to 2001 and 0.2 mm yr−1 higher during 2002 to 2014. Application of new correction models brought a reduction of altimeter crossover variances for most corrections

    Relevance of cyclin D1b expression and CCND1 polymorphism in the pathogenesis of multiple myeloma and mantle cell lymphoma

    Get PDF
    BACKGROUND: The CCND1 gene generates two mRNAs (cyclin D1a and D1b) through an alternative splicing at the site of a common A/G polymorphism. Cyclin D1a and b proteins differ in their C-terminus, a region involved in protein degradation and sub-cellular localization. Recent data have suggested that cyclin D1b could be a nuclear oncogene. The presence of cyclin D1b mRNA and protein has been studied in two hemopathies in which cyclin D1 could be present: multiple myeloma (MM) and mantle cell lymphoma (MCL). The A/G polymorphism of CCND1 has also been verified in a series of patients. METHODS: The expression of cyclin D1 mRNA isoforms has been studied by real-time quantitative PCR; protein isoforms expression, localization and degradation by western blotting. The CCND1 polymorphism was analyzed after sequencing genomic DNA. RESULTS: Cyclin D1 mRNA isoforms a and b were expressed in mantle cell lymphoma (MCL) and multiple myeloma (MM). Cyclin D1b proteins were present in MCL, rarely in MM. Importantly, both protein isoforms localized the nuclear and cytoplasmic compartments. They displayed the same short half-life. Thus, the two properties of cyclin D1b recognized as necessary for its transforming activity are missing in MCL. Moreover, CCND1 polymorphism at the exon/intron boundary had no influence on splicing regulation in MCL cells. CONCLUSION: Our results support the notion that cyclin D1b is not crucial for the pathogenesis of MCL and MM
    • …
    corecore