19 research outputs found

    The study of atmospheric ice-nucleating particles via microfluidically generated droplets

    Get PDF
    Ice-nucleating particles (INPs) play a significant role in the climate and hydrological cycle by triggering ice formation in supercooled clouds, thereby causing precipitation and affecting cloud lifetimes and their radiative properties. However, despite their importance, INP often comprise only 1 in 10³–10⁶ ambient particles, making it difficult to ascertain and predict their type, source, and concentration. The typical techniques for quantifying INP concentrations tend to be highly labour-intensive, suffer from poor time resolution, or are limited in sensitivity to low concentrations. Here, we present the application of microfluidic devices to the study of atmospheric INPs via the simple and rapid production of monodisperse droplets and their subsequent freezing on a cold stage. This device offers the potential for the testing of INP concentrations in aqueous samples with high sensitivity and high counting statistics. Various INPs were tested for validation of the platform, including mineral dust and biological species, with results compared to literature values. We also describe a methodology for sampling atmospheric aerosol in a manner that minimises sampling biases and which is compatible with the microfluidic device. We present results for INP concentrations in air sampled during two field campaigns: (1) from a rural location in the UK and (2) during the UK’s annual Bonfire Night festival. These initial results will provide a route for deployment of the microfluidic platform for the study and quantification of INPs in upcoming field campaigns around the globe, while providing a benchmark for future lab-on-a-chip-based INP studies

    Atmos. Res.

    No full text

    J. Atmos. Sci.

    No full text

    Wind tunnel experiments on the retention of trace gases during riming: nitric acid, hydrochloric acid, and hydrogen peroxide

    Get PDF
    Laboratory experiments were carried out in a vertical wind tunnel to study the retention of different atmospheric trace gases during riming. In the experiments, the rimed ice particles floated in a laminar air stream carrying a cloud of supercooled droplets with radii between 10 and 20 μm. Ice particles, dendritic ice crystals, and snow flakes with diameters between 6 mm and 1.5 cm were allowed to rime at temperatures between −5 and −12 °C where riming mainly proceeds in the atmosphere and with cloud liquid water contents between 1 and 1.5 g m<sup>−3</sup> which are values typically found in atmospheric mixed phase clouds. Three trace species were investigated, nitric and hydrochloric acid, and hydrogen peroxide. They were present in the supercooled liquid droplets in concentrations from 1 to 120 ppmv, i.e. similar to the ones measured in cloud drops. The chemical analyses of the rimed ice particles allow to determine the trace species concentration in the ice phase. Together with the known liquid phase concentration the retention coefficients were calculated in terms of the amount of the species which remained in the ice phase after freezing. It was found that the highly soluble trace gases nitric and hydrochloric acid were retained nearly completely (98.6 ± 8 % and 99.7 ± 9 %, respectively) while for hydrogen peroxide a retention coefficient of 64.3 ± 11 % was determined. No influence of the riming temperature on the retention was found which can be explained by the fact that in the observed range of temperature and liquid water content riming proceeded in the dry growth regime

    Pore structure 3-D imaging by synchrotron micro-tomography of graupel grains

    Full text link
    Three dimensional air bubble structure including size distribution, concentration and spatial distribution are important clues in identifying the growth regime of graupel and hailstone. For imaging of the bubble structure, a cryo-stage was developed to adapt to the standard setup of the SLS X04SA tomography beamline (actually replaced by the TOMCAT beamline) at the Swiss Light Source synchrotron facility to the requirements of ice particle micro-tomography. The cryo-stage setup provides for the first time 3-D-data on the individual inner pore shape delineation down to μm spatial (voxel) resolution of sub-mm small naturally as well as wind tunnel rimed graupel particles. Special care must be taken for maintaining a cooling chain between sampling and measurement. It must be kept at liquid nitrogen temperature (77 K) until measurement of the original structure at the μm spatial scale. However, even at that temperature there is no chance to preserve any ice bubble structure at sub-μm spatial resolution due to the Kelvin effect. In natural graupel grains, Y-shaped morphology of air-filled pores was found. This morphology transformed into smaller and rounded voids well-known from literature when the ice particle was annealed for as short as half an hour at 265 K and must, therefore, be regarded as artificial rather than representing the in situ pore structure. With the new synchrotron tomography approach, quantitative information on the in situ pore structure statistics within individual samples representative for a known or, thus, deduced growth mode or history can be derived, in particular if combined with airplane sampling in the troposphere at in situ growth conditions

    Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

    No full text
    Zaprasis A, Brill J, Thüring M, et al. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides. Applied and environmental microbiology. 2013;79(2):576-587.Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes
    corecore