42 research outputs found

    A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin

    Full text link
    Our purpose was to improve the thermal, mechanical and optimal properties of an epoxy bioresin using optimum hybrid natural pigments previously synthesised in our lab. Next, we searched for the best combinations of factors in the synthesis of natural hybrid nanopigments and then incorporated them into the bioresin. We combined three structural modifiers in the nanopigment synthesis, surfactant, coupling agent (silane) and a mordant salt (alum), selected to replicate mordant textile dyeing with natural dyes. We used Taguchi s design L8 to seek final performance optimisation. We selected three natural dyes, chlorophyll, beta-carotene and beetroot extract, and used two laminar nanoclay types, montmorillonite and hydrotalcite. The thermal, mechanical and colorimetric characterisation of the composite obtained by mixing natural hybrid nanopigments (bionanocomposite) was made. The natural dye interactions with both nanoclays improved the thermal stabilities, colour performance and UV VIS light exposure stability of natural dyes and bioresins. The best bionanocomposite materials were found in an acidic pH [3, 4] environment and by modifying nanoclays with mordant and surfactant during the nanopigment synthesis processWe thank the Spanish Ministry of Economy and Competitiveness for funding Projects DPI2011-30090-C02-02 and DPI2015-68514-R.Micó Vicent, B.; Jordán Núñez, J.; Martinez Verdu, FM.; Balart Gimeno, RA. (2017). A combination of three surface modifiers for the optimal generation and application of natural hybrid nanopigments in a biodegradable resin. Journal of Materials Science. 52(2):889-898. https://doi.org/10.1007/s10853-016-0384-8S889898522Majdzadeh-Ardakani K, Nazari B (2010) Improving the mechanical properties of thermoplastic starch/poly(vinyl alcohol)/clay nanocomposites. Compos Sci Technol 70(10):1557–1563. doi: 10.1016/j.compscitech.2010.05.022Najafi N, Heuzey MC, Carreau PJ (2012) Polylactide (PLA)-clay nanocomposites prepared by melt compounding in the presence of a chain extender. Compos Sci Technol 72(5):608–615. doi: 10.1016/j.compscitech.2012.01.005Acharya H, Srivastava SK, Bhowmick AK (2007) Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: structural characterization and properties. Compos Sci Technol 67(13):2807–2816. doi: 10.1016/j.compscitech.2007.01.030Marras SI, Zuburtikudis I, Panayiotou C (2007) Nanostructure vs. microstructure: morphological and thermomechanical characterization of poly(L-lactic acid)/layered silicate hybrids. Eur Polymer J 43(6):2191–2206. doi: 10.1016/j.eurpolymj.2007.03.013Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: Part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453(2):75–96. doi: 10.1016/j.tca.2006.11.002Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids Part I Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38(5):909–915. doi: 10.1023/a:1022308705231Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24(1):45–52. doi: 10.1002/(sici)1099-1018(200001/02)24:13.0.co;2-sRay SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002Gao D, Li R, Lv B, Ma J, Tian F, Zhang J (2015) Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Compos B Eng 77:329–337. doi: 10.1016/j.compositesb.2015.03.061LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1–2):11–29. doi: 10.1016/s0169-1317(99)00017-4Karuntarut Sermsantiwanita SP (2012) Preparation of bio-based nanocomposite emulsions: effect of clay type. Prog Org Coat 74:660–666Pascual J, Fages E, Fenollar O, Garcia D, Balart R (2009) Influence of the compatibilizer/nanoclay ratio on final properties of polypropylene matrix modified with montmorillonite-based organoclay. Polym Bull 62(3):367–380. doi: 10.1007/s00289-008-0018-7Beltrán MI, Benavente V, Marchante V, Marcilla A (2013) The influence of surfactant loading level in a montmorillonite on the thermal, mechanical and rheological properties of EVA nanocomposites. Appl Clay Sci 83–84:153–161. doi: 10.1016/j.clay.2013.08.028Bitinis N, Verdejo R, Maya EM, Espuche E, Cassagnau P, Lopez-Manchado MA (2012) Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Compos Sci Technol 72(2):305–313. doi: 10.1016/j.compscitech.2011.11.018Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536. doi: 10.1016/j.tifs.2010.07.008Huskić M, Žigon M, Ivanković M (2013) Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Appl Clay Sci 85:109–115. doi: 10.1016/j.clay.2013.09.004Osman MA, Rupp JEP, Suter UW (2005) Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46(19):8202–8209. doi: 10.1016/j.polymer.2005.06.101Wang H, Fang P, Chen Z, Wang S, Xu Y, Fang Z (2008) Effect of silane grafting on the microstructure of high-density polyethylene/organically modified montmorillonite nanocomposites. Polym Int 57(1):50–56. doi: 10.1002/pi.2310Montgomery DC (2008) Design and analysis of experiments. Wiley, HobokenBaena-Murillo E, Micó-Vicent B, Martínez-Verdú FM (2013) Method for the synthesis of nanostructured hybrid pigments having properties that can be syntonized. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2013110841&recNum=229&docAn=ES2013070026&queryString=(ANA:ES)&maxRec=25813Kohno Y, Inagawa M, Ikoma S, Shibata M, Matsushima R, Fukuhara C, Tomita Y, Maeda Y, Kobayashi K (2011) Stabilization of a hydrophobic natural dye by intercalation into organo-montmorillonite. Appl Clay Sci 54(3):202–205. doi: 10.1016/j.clay.2011.09.001Kaneko Y, Iyi N, Bujdak J, Sasai R, Fujita T (2004) Effect of layer charge density on orientation and aggregation of a cationic laser dye incorporated in the interlayer space of montmorillonites. J Colloid Interface Sci 269(1):22–25. doi: 10.1016/s0021-9797(03)00602-7Silva AA, Dahmouche K, Soares BG (2011) Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl Clay Sci 54(2):151–158. doi: 10.1016/j.clay.2011.08.002Park S-J, Kim B-J, Seo D-I, Rhee K-Y, Lyu Y-Y (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526(1–2):74–78. doi: 10.1016/j.msea.2009.07.023Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MN (2005) Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res 39(5):922–932. doi: 10.1016/j.watres.2004.12.008Fahn R, Fenderl K (1983) Reaction-products of organic-dye molecules with acid-treated montmorillonite. Clay Miner 18(4):447–458. doi: 10.1180/claymin.1983.018.4.10Kohno Y, Totsuka K, Ikoma S, Yoda K, Shibata M, Matsushima R, Tomita Y, Maeda Y, Kobayashi K (2009) Photostability enhancement of anionic natural dye by intercalation into hydrotalcite. J Colloid Interface Sci 337(1):117–121. doi: 10.1016/j.jcis.2009.04.065Capilla P, Pujol J (2002) Fundamentos de Colorimetría. Universitat de ValenciaGilabert EJ, Verdú FMM (2007) Medida de la luz y el color. Editorial de la UPV. In: Color psicofísico, pp 185–221Zhao H, Nagy KL (2004) Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. J Colloid Interface Sci 274(2):613–624. doi: 10.1016/j.jcis.2004.03.05

    Structure and properties of polylactide/natural rubber blends

    No full text
    International audiencePolylactide, PLA, is a biodegradable thermoplastic polyester derived from biomass that has restricted packaging applications due to its high brittleness and poor crystallisation behaviour. Here, new formulations based on natural rubber-PLA blends have been developed. The processing windows, temperature, time, and rotor rate, and the rubber content have been optimised in order to obtain a blend with useful properties. The rubber phase was uniformly dispersed in the continuous PLA matrix with a droplet size range from 1.1 to 2.0 mu m. The ductility of PLA has been significantly improved by blending with natural rubber, NR. The elongation at break improved from 5% for neat PLA to 200% by adding 10 wt% NR. In addition, the incorporation of NR not only increased the crystallisation rate but also enhanced the crystallisation ability of PLA. These materials are, therefore, very promising for industrial applications

    Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites

    No full text
    International audienceA novel toughened polylactic acid (PLA) bionanocomposite with tuneable properties was successfully prepared by melt mixing PEA with natural rubber and several montmorillonites (MMTs). The organoclays were preferentially located at the interface acting as compatibilisers between both polymer phases. This location resulted in a marked improvement of the physical and mechanical properties of the system. Moreover, these properties can be controlled as a function of the nanofiller nature and the mixing procedure used

    Multifunctional nanostructured PLA materials for packaging and tissue engineering

    No full text
    This review reports the promising prospects of poly(lactic acid) (PLA) based nanostructured materials considering two of their main potential uses, packaging and tissue engineering. The review initially discusses the significant progresses in the development of PLA bionanocomposites for packaging applications. The review then continues with a comprehensive analysis of the recent advances in tissue engineering applications focusing in the synthesis of PLA nanoparticles, the processing of PLA based multifunctional nanocomposites and PLA surface modification techniques. In summary, the review presents the current state of nanostructured PLA materials and establishes the exciting present and future prospects of these materials at the interface of chemistry, biology and material science.The authors gratefully acknowledge the financial support of the CSIC (2010MA0003). NB thanks the CSIC for a JAE-Pre grant. The Author Elena Fortunati is the recipient of the fellowship “L’Oreal Italia per le Donne e la Scienza 2012” for the project >Progettazione, sviluppo e caratterizzazione di biomateriali nanostrutturati capaci di modulare la risposta e il differenziamento delle cellule staminali>.Peer Reviewe

    Quantitative mapping of mechanical properties in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by nanoindentation with atomic force microscopy

    No full text
    Quantitative mapping of the mechanical properties of a series of polylactic acid/natural rubber/organoclay bionanocomposites has been accomplished by using nanoindentation with atomic force microscopy. Topography, elastic modulus and adhesion maps were obtained simultaneously revealing nanoscopic mechanical features in the samples associated to the different phases. For polylactic acid and polylactic acid/natural rubber a single distribution of Young's moduli was obtained whose maximum correlates well with the macroscopic measurements. Bionanocomposites with high organoclay loads exhibit a bimodal distribution of elastic moduli whose maxima can be associated to the polylactic acid matrix and to the reinforcing levels provided by the organoclay component. Adhesion maps allow one to obtain mechanical contrast between polylactic acid and organoclay, at high loadings, revealing the good compatibility of the organoclay with the polymer
    corecore