153 research outputs found

    Theory of sound attenuation in glasses: The role of thermal vibrations

    Get PDF
    Sound attenuation and internal friction coefficients are calculated for a realistic model of amorphous silicon. It is found that, contrary to previous views, thermal vibrations can induce sound attenuation at ultrasonic and hypersonic frequencies that is of the same order or even larger than in crystals. The reason is the internal-strain induced anomalously large Gr\"uneisen parameters of the low-frequency resonant modes.Comment: 8 pages, 3 figures; to appear in PR

    The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal

    Get PDF
    Mammals vary dramatically in lifespan, by at least two-orders of magnitude, but the molecular basis for this difference remains largely unknown. The bowhead whale Balaena mysticetus is the longest-lived mammal known, with an estimated maximal lifespan in excess of two hundred years. It is also one of the two largest animals and the most cold-adapted baleen whale species. Here, we report the first genome-wide gene expression analyses of the bowhead whale, based on the de novo assembly of its transcriptome. Bowhead whale or cetacean-specific changes in gene expression were identified in the liver, kidney and heart, and complemented with analyses of positively selected genes. Changes associated with altered insulin signaling and other gene expression patterns could help explain the remarkable longevity of bowhead whales as well as their adaptation to a lipid-rich diet. The data also reveal parallels in candidate longevity adaptations of the bowhead whale, naked mole rat and Brandt's bat. The bowhead whale transcriptome is a valuable resource for the study of this remarkable animal, including the evolution of longevity and its important correlates such as resistance to cancer and other diseases

    Scholar-activists in an expanding European food sovereignty movement

    Get PDF
    This article analyzes the roles, relations, and positions of scholar-activists in the European food sovereignty movement. In doing so, we document, make visible and question the political dimensions of researchers' participation in the movement. We argue that scholar-activists are part of the movement, but are distinct from the affected constituencies, put in place to ensure adequate representation of key movement actors. This is because scholar-activists lack a collective identity, have no processes to formulate collective demands, and no mechanisms for inter-researcher and researchers-movement communication. We reflect on whether and how scholar-activists could organize, and discuss possible pathways for a more cohesive and stronger researcher engagement in the movement.</p

    Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon

    Get PDF
    The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si) and paracrystalline silicon (p-Si), containing small crystalline grains embedded in a disordered matrix, are calculated using realistic structural models. The models are 1000-atom four-coordinated networks relaxed to a local minimum of the Stillinger-Weber interatomic potential. The vibrational decay rates are calculated numerically by perturbation theory, taking into account cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are found to be on picosecond time scales, in agreement with the previous perturbative and classical molecular dynamics calculations on a 216-atom model. The calculated decay rates for p-Si are similar to those of a-Si. No modes in p-Si reside entirely on the crystalline cluster, decoupled from the amorphous matrix. The localized modes with the largest (up to 59%) weight on the cluster decay primarily to two diffusons. The numerical results are discussed in relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62}, 8072 (2000)] that long vibrational relaxation inferred experimentally may be due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure

    Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity

    Full text link
    Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are considered analytically by a quasi-discreteness approach. The criteria for the occurence of asymmetric gap solitons (with vibrating frequency lying in the gap of phonon bands) and small-amplitude, asymmetric intrinsic localized modes (with the vibrating frequency being above all the phonon bands) are obtained explicitly based on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle displacement for all these nonlinear localized excitations are also given. The result is applied to standard two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body potentials is made and good agreement is found.Comment: 24 pages in Revtex, 2 PS figure

    Dynamical properties of liquid Al near melting. An orbital-free molecular dynamics study

    Get PDF
    The static and dynamic structure of liquid Al is studied using the orbital free ab-initio molecular dynamics method. Two thermodynamic states along the coexistence line are considered, namely T = 943 K and 1323 K for which X-ray and neutron scattering data are available. A new kinetic energy functional, which fulfills a number of physically relevant conditions is employed, along with a local first principles pseudopotential. In addition to a comparison with experiment, we also compare our ab-initio results with those obtained from conventional molecular dynamics simulations using effective interionic pair potentials derived from second order pseudopotential perturbation theory.Comment: 15 pages, 12 figures, 2 tables, submitted to PR

    Digits Lost or Gained? Evidence for Pedal Evolution in the Dwarf Salamander Complex (Eurycea, Plethodontidae)

    Get PDF
    Change in digit number, particularly digit loss, has occurred repeatedly over the evolutionary history of tetrapods. Although digit loss has been documented among distantly related species of salamanders, it is relatively uncommon in this amphibian order. For example, reduction from five to four toes appears to have evolved just three times in the morphologically and ecologically diverse family Plethodontidae. Here we report a molecular phylogenetic analysis for one of these four-toed lineages – the Eurycea quadridigitata complex (dwarf salamanders) – emphasizing relationships to other species in the genus. A multilocus phylogeny reveals that dwarf salamanders are paraphyletic with respect to a complex of five-toed, paedomorphic Eurycea from the Edwards Plateau in Texas. We use this phylogeny to examine evolution of digit number within the dwarfβˆ’Edwards Plateau clade, testing contrasting hypotheses of digit loss (parallelism among dwarf salamanders) versus digit gain (re-evolution in the Edwards Plateau complex). Bayes factors analysis provides statistical support for a five-toed common ancestor at the dwarf-Edwards node, favoring, slightly, the parallelism hypothesis for digit loss. More importantly, our phylogenetic results pinpoint a rare event in the pedal evolution of plethodontid salamanders

    Population Structure as Revealed by mtDNA and Microsatellites in Northern Fur Seals, Callorhinus ursinus, throughout Their Range

    Get PDF
    Background: The northern fur seal (Callorhinus ursinus; NFS) is a widely distributed pinniped that has been shown to exhibit a high degree of philopatry to islands, breeding areas on an island, and even to specific segments of breeding areas. This level of philopatry could conceivably lead to highly genetically divergent populations. However, northern fur seals have the potential for dispersal across large distances and have experienced repeated rapid population expansions following glacial retreat and the more recent cessation of intensive harvest pressure. Methodology/Principal Findings: Using microsatellite and mitochondrial loci, we examined population structure in NFS throughout their range. We found only weak population genetic structure among breeding islands including significant FST and W ST values between eastern and western Pacific islands. Conclusions: We conclude that insufficient time since rapid population expansion events (both post glacial and following the cessation of intense harvest pressure) mixed with low levels of contemporary migration have resulted in an absence of genetic structure across the entire northern fur seal range

    Mode-division multiplexed transmission with inline few-mode fiber amplifier

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    • …
    corecore