163 research outputs found

    Vaginal stenosis with cervical intraepithelial neoplasia in a postmenopausal patient with pyometra: a diagnostic dilemma

    Get PDF
    Postmenopausal patient presenting with pain and lump in abdomen should be considered as a complication caused by gynaecological malignancy unless proved otherwise pyometra is most common in postmenopausal women but it can affect women of child bearing age as well. Usually it is caused by impairment of natural drainage of the cervix due to malignant diseases of genital tract and consequences of their treatment with radiotherapy. Authors report one such case with cervical intraepithelial neoplasia with uterus markedly enlarged to 26-28 weeks size with Vaginal stenosis in an eighty-year-old postmenopausal patient

    Successful management of a near miss case of eclampsia with intracranial haemorrhage requiring craniotomy

    Get PDF
    Large population-based studies on stroke report that intracerebral haemorrhage is rare in young women however it is a grave and disturbing complication of pregnancy. Preeclampsia is usually clinically silent, but may cause symptoms of neurological dysfunction such as headache, visual disturbances and impairment of consciousness. Eclampsia is in the occurrence of seizures in the context of preeclampsia and is often, but not always, preceded by the above neurological symptoms. Most published data support the view that preeclampsia and eclampsia are important causative factors for pregnancy related ICH. Sparse data is available with respect to the management of such cases. Identification of near miss cases is an important step in reducing mortality. Herein we report a near miss case of eclampsia with intracranial haemorrhage requiring craniotomy

    Medical management of cervical pregnancy following in vitro fertilization

    Get PDF
    Cervical ectopic gestation is a serious and potentially lethal condition encountered in patients undergoing invitro fertilization. Familiarity with these complications will allow accurate and timely diagnosis and help avert potentially disastrous consequences We report a rare case of cervical pregnancy after in vitro fertilization and embryo transfer successfully treated with Methotrexate

    Galactic secondary positron flux at the Earth

    Get PDF
    Secondary positrons are produced by spallation of cosmic rays within the interstellar gas. Measurements have been typically expressed in terms of the positron fraction, which exhibits an increase above 10 GeV. Many scenarios have been proposed to explain this feature, among them some additional primary positrons originating from dark matter annihilation in the Galaxy. The PAMELA satellite has provided high quality data that has enabled high accuracy statistical analyses to be made, showing that the increase in the positron fraction extends up to about 100 GeV. It is therefore of paramount importance to constrain theoretically the expected secondary positron flux to interpret the observations in an accurate way. We find the secondary positron flux to be reproduced well by the available observations, and to have theoretical uncertainties that we quantify to be as large as about one order of magnitude. We also discuss the positron fraction issue and find that our predictions may be consistent with the data taken before PAMELA. For PAMELA data, we find that an excess is probably present after considering uncertainties in the positron flux, although its amplitude depends strongly on the assumptions made in relation to the electron flux. By fitting the current electron data, we show that when considering a soft electron spectrum, the amplitude of the excess might be far lower than usually claimed. We provide fresh insights that may help to explain the positron data with or without new physical model ingredients. PAMELA observations and the forthcoming AMS-02 mission will allow stronger constraints to be aplaced on the cosmic--ray transport parameters, and are likely to reduce drastically the theoretical uncertainties.Comment: 15 pages, 12 figures. The recent PAMELA data on the positron fraction (arXiv:0810.4995) have been included and the ensuing discussion has been extended. Accepted version in A&

    Gamma-Ray Telescopes (in "400 Years of Astronomical Telescopes")

    Full text link
    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of aluminum-26.Comment: 11 pages, 6 figures/ in "400 Years of Astronomical Telescopes: A Review of History, Science and Technology", ed. B.R. Brandl, R. Stuik, & J.K. Katgert-Merkeli (Exp. Astron. 26, 111-122 [2009]

    The relationship of myocardial contraction and electrical excitation—the correlation between scintigraphic phase image analysis and electrophysiologic mapping

    Get PDF
    Phase imaging derived from equilibrium radionuclide angiography presents the ventricular contraction sequence. It has been widely but only indirectly correlated with the sequence of electrical myocardial activation. We sought to determine the specific relationship between the sequence of phase progression and the sequence of myocardial activation, contraction and conduction, in order to document a noninvasive method that could monitor both. In 7 normal and 9 infarcted dogs, the sequence of phase angle was correlated with the epicardial activation map in 126 episodes of sinus rhythm and pacing from three ventricular sites. In each episode, the site of earliest phase angle was identical to the focus of initial epicardial activation. Similarly, the serial contraction pattern by phase image analysis matched the electrical epicardial activation sequence completely or demonstrated good agreement in approximately 85% of pacing episodes, without differences between normal or infarct groups. A noninvasive method to accurately determine the sequence of contraction may serve as a surrogate for the associated electrical activation sequence or be applied to identify their differences

    Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus

    Get PDF
    A new measurement of the momentum spectra of both positive and negative muons as function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on the 19-20th of July 1994 and during the balloon flight on the 8-9th of August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for negative muons and 0.3-2 GeV/c for positive muons, for atmospheric depths from 3.3 to 1000 g/cm**2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.Comment: 28 pages, 13 Postscript figures, uses revtex.sty, to appear in Phys. Rev.

    Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude

    Get PDF
    We report here the measurements of the energy spectra of atmospheric muons and of the cosmic ray primary proton and helium nuclei in a single experiment. These were carried out using the MASS superconducting spectrometer in a balloon flight experiment in 1991. The relevance of these results to the atmospheric neutrino anomaly is emphasized. In particular, this approach allows uncertainties caused by the level of solar modulation, the geomagnetic cut-off of the primaries and possible experimental systematics to be decoupled in the comparison of calculated fluxes of muons to measured muon fluxes. The muon observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886 g/cmsquared, respectively. The proton and helium primary measurements cover the rigidity range from 3 to 100 GV, in which both the solar modulation and the geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to appear in Phys. Rev.

    Artificial intelligence for dementia research methods optimization

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) approaches are increasingly being used in dementia research. However, several methodological challenges exist that may limit the insights we can obtain from high-dimensional data and our ability to translate these findings into improved patient outcomes. To improve reproducibility and replicability, researchers should make their well-documented code and modeling pipelines openly available. Data should also be shared where appropriate. To enhance the acceptability of models and AI-enabled systems to users, researchers should prioritize interpretable methods that provide insights into how decisions are generated. Models should be developed using multiple, diverse datasets to improve robustness, generalizability, and reduce potentially harmful bias. To improve clarity and reproducibility, researchers should adhere to reporting guidelines that are co-produced with multiple stakeholders. If these methodological challenges are overcome, AI and ML hold enormous promise for changing the landscape of dementia research and care
    • …
    corecore