275 research outputs found

    Observing bullying at school: The mental health implications of witness status

    Get PDF
    This study explores the impact of bullying on the mental health of students who witness it. A representative sample of 2,002 students aged 12 to 16 years attending 14 schools in the United Kingdom were surveyed using a questionnaire that included measures of bullying at school, substance abuse, and mental health risk. The results suggest that observing bullying at school predicted risks to mental health over and above that predicted for those students who were directly involved in bullying behavior as either a perpetrator or a victim. Observing others was also found to predict higher risk irrespective of whether students were or were not victims themselves. The results are discussed with reference to past research on bystander and witness behavior

    Development of advanced fabrication techniques for regeneratively cooled thrust chambers by the gas-pressure-bonding process Final report, 29 Jun. 1967 - 30 Apr. 1970

    Get PDF
    Production of regeneratively cooled rocket thrust chambers by removable tooling and subsequent hot isostatic pressing in gas autoclav

    Oncology-led early identification of nutritional risk: a pragmatic, evidence-based protocol (PRONTO)

    Get PDF
    Simple Summary Early identification of patients on antineoplastic therapy who are at risk for or already malnourished is critical for optimizing treatment success. Malnourished patients are at increased risk for being unable to tolerate the most effective 'level' and 'duration' of treatment, with grave implications for both the short- (during treatment) and long-term outcomes. Herein, we provide a practical PROtocol for NuTritional risk in Oncology (PRONTO) to enable oncologists to identify patients with or at risk of malnutrition for further evaluation and follow-up with members of the multidisciplinary care team (MDT). Additional guidance is included on the oncologist-led provision of nutritional support if referral to a dietary service is not available. Nutritional issues, including malnutrition, low muscle mass, sarcopenia (i.e., low muscle mass and strength), and cachexia (i.e., weight loss characterized by a continuous decline in skeletal muscle mass, with or without fat loss), are commonly experienced by patients with cancer at all stages of disease. Cancer cachexia may be associated with poor nutritional status and can compromise a patient's ability to tolerate antineoplastic therapy, increase the likelihood of post-surgical complications, and impact long-term outcomes including survival, quality of life, and function. One of the primary nutritional problems these patients experience is malnutrition, of which muscle depletion represents a clinically relevant feature. There have been recent calls for nutritional screening, assessment, treatment, and monitoring as a consistent component of care for all patients diagnosed with cancer. To achieve this, there is a need for a standardized approach to enable oncologists to identify patients commencing and undergoing antineoplastic therapy who are or who may be at risk of malnutrition and/or muscle depletion. This approach should not replace existing tools used in the dietitian's role, but rather give the oncologist a simple nutritional protocol for optimization of the patient care pathway where this is needed. Given the considerable time constraints in day-to-day oncology practice, any such approach must be simple and quick to implement so that oncologists can flag individual patients for further evaluation and follow-up with appropriate members of the multidisciplinary care team. To enable the rapid and routine identification of patients with or at risk of malnutrition and/or muscle depletion, an expert panel of nutrition specialists and practicing oncologists developed the PROtocol for NuTritional risk in Oncology (PRONTO). The protocol enables the rapid identification of patients with or at risk of malnutrition and/or muscle depletion and provides guidance on next steps. The protocol is adaptable to multiple settings and countries, which makes implementation feasible by oncologists and may optimize patient outcomes. We advise the use of this protocol in countries/clinical scenarios where a specialized approach to nutrition assessment and care is not available

    Predicting the safety and efficacy of butter therapy to raise tumour pHe: an integrative modelling study

    Get PDF
    Background: Clinical positron emission tomography imaging has demonstrated the vast majority of human cancers exhibit significantly increased glucose metabolism when compared with adjacent normal tissue, resulting in an acidic tumour microenvironment. Recent studies demonstrated reducing this acidity through systemic buffers significantly inhibits development and growth of metastases in mouse xenografts.\ud \ud Methods: We apply and extend a previously developed mathematical model of blood and tumour buffering to examine the impact of oral administration of bicarbonate buffer in mice, and the potential impact in humans. We recapitulate the experimentally observed tumour pHe effect of buffer therapy, testing a model prediction in vivo in mice. We parameterise the model to humans to determine the translational safety and efficacy, and predict patient subgroups who could have enhanced treatment response, and the most promising combination or alternative buffer therapies.\ud \ud Results: The model predicts a previously unseen potentially dangerous elevation in blood pHe resulting from bicarbonate therapy in mice, which is confirmed by our in vivo experiments. Simulations predict limited efficacy of bicarbonate, especially in humans with more aggressive cancers. We predict buffer therapy would be most effectual: in elderly patients or individuals with renal impairments; in combination with proton production inhibitors (such as dichloroacetate), renal glomular filtration rate inhibitors (such as non-steroidal anti-inflammatory drugs and angiotensin-converting enzyme inhibitors), or with an alternative buffer reagent possessing an optimal pK of 7.1–7.2.\ud \ud Conclusion: Our mathematical model confirms bicarbonate acts as an effective agent to raise tumour pHe, but potentially induces metabolic alkalosis at the high doses necessary for tumour pHe normalisation. We predict use in elderly patients or in combination with proton production inhibitors or buffers with a pK of 7.1–7.2 is most promising

    SelenoDB 1.0 : a database of selenoprotein genes, proteins and SECIS elements

    Get PDF
    Selenoproteins are a diverse group of proteins usually misidentified and misannotated in sequence databases. The presence of an in-frame UGA (stop) codon in the coding sequence of selenoprotein genes precludes their identification and correct annotation. The in-frame UGA codons are recoded to cotranslationally incorporate selenocysteine, a rare selenium-containing amino acid. The development of ad hoc experimental and, more recently, computational approaches have allowed the efficient identification and characterization of the selenoproteomes of a growing number of species. Today, dozens of selenoprotein families have been described and more are being discovered in recently sequenced species, but the correct genomic annotation is not available for the majority of these genes. SelenoDB is a long-term project that aims to provide, through the collaborative effort of experimental and computational researchers, automatic and manually curated annotations of selenoprotein genes, proteins and SECIS elements. Version 1.0 of the database includes an initial set of eukaryotic genomic annotations, with special emphasis on the human selenoproteome, for immediate inspection by selenium researchers or incorporation into more general databases. SelenoDB is freely available at http://www.selenodb.org

    An ex vivo cystic fibrosis model recapitulates key clinical aspects of chronic Staphylococcus aureus infection

    Get PDF
    Staphylococcus aureus is the most prevalent organism isolated from the airways of people with cystic fibrosis (CF), predominantly early in life. Yet its role in the pathology of lung disease is poorly understood. In mice, and many experiments using cell lines, the bacterium invades cells or interstitium, and forms abscesses. This is at odds with the limited available clinical data: interstitial bacteria are rare in CF biopsies and abscesses are highly unusual. Bacteria instead appear to localize in mucus plugs in the lumens of bronchioles. We show that, in an established ex vivo model of CF infection comprising porcine bronchiolar tissue and synthetic mucus, S. aureus demonstrates clinically significant characteristics including colonization of the airway lumen, with preferential localization as multicellular aggregates in mucus, initiation of a small colony variant phenotype and increased antibiotic tolerance of tissue-associated aggregates. Tissue invasion and abscesses were not observed. Our results may inform ongoing debates relating to clinical responses to S. aureus in people with CF

    Genetic Analysis of Completely Sequenced Disease-Associated MHC Haplotypes Identifies Shuffling of Segments in Recent Human History

    Get PDF
    The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II–related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR–DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations

    The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes

    Get PDF
    The Zebrafish Information Network (ZFIN, http://zfin.org), the model organism database for zebrafish, provides the central location for curated zebrafish genetic, genomic and developmental data. Extensive data integration of mutant phenotypes, genes, expression patterns, sequences, genetic markers, morpholinos, map positions, publications and community resources facilitates the use of the zebrafish as a model for studying gene function, development, behavior and disease. Access to ZFIN data is provided via web-based query forms and through bulk data files. ZFIN is the definitive source for zebrafish gene and allele nomenclature, the zebrafish anatomical ontology (AO) and for zebrafish gene ontology (GO) annotations. ZFIN plays an active role in the development of cross-species ontologies such as the phenotypic quality ontology (PATO) and the gene ontology (GO). Recent enhancements to ZFIN include (i) a new home page and navigation bar, (ii) expanded support for genotypes and phenotypes, (iii) comprehensive phenotype annotations based on anatomical, phenotypic quality and gene ontologies, (iv) a BLAST server tightly integrated with the ZFIN database via ZFIN-specific datasets, (v) a global site search and (vi) help with hands-on resources
    corecore