29 research outputs found

    Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors.

    Get PDF
    The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities

    Expression of the Axonal Membrane Glycoprotein M6a Is Regulated by Chronic Stress

    Get PDF
    It has been repeatedly shown that chronic stress changes dendrites, spines and modulates expression of synaptic molecules. These effects all may impair information transfer between neurons. The present study shows that chronic stress also regulates expression of M6a, a glycoprotein which is localised in axonal membranes. We have previously demonstrated that M6a is a component of glutamatergic axons. The present data reveal that it is the splice variant M6a-Ib, not M6a-Ia, which is strongly expressed in the brain. Chronic stress in male rats (3 weeks daily restraint) has regional effects: quantitative in situ hybridization demonstrated that M6a-Ib mRNA in dentate gyrus granule neurons and in CA3 pyramidal neurons is downregulated, whereas M6a-Ib mRNA in the medial prefrontal cortex is upregulated by chronic stress. This is the first study showing that expression of an axonal membrane molecule is differentially affected by stress in a region-dependent manner. Therefore, one may speculate that diminished expression of the glycoprotein in the hippocampus leads to altered output in the corresponding cortical projection areas. Enhanced M6a-Ib expression in the medial prefrontal cortex (in areas prelimbic and infralimbic cortex) might be interpreted as a compensatory mechanism in response to changes in axonal projections from the hippocampus. Our findings provide evidence that in addition to alterations in dendrites and spines chronic stress also changes the integrity of axons and may thus impair information transfer even between distant brain regions

    Therapeutic potential of neurotrophins for repair after brain injury: A helping hand from biomaterials

    No full text
    Stroke remains the leading cause of long-term disability with limited options available to aid in recovery. Significant effort has been made to try and minimize neuronal damage following stroke with use of neuroprotective agents, however, these treatments have yet to show clinical efficacy. Regenerative interventions have since become of huge interest as they provide the potential to restore damaged neural tissue without being limited by a narrow therapeutic window. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), and their high affinity receptors are actively produced throughout the brain and are involved in regulating neuronal activity and normal day-to-day function. Furthermore, neurotrophins are known to play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and traumatic brain injury (TBI). Unfortunately, exogenous administration of these neurotrophins is limited by a lack of blood-brain-barrier (BBB) permeability, poor half-life, and rapid degradation. Therefore, we have focused this review on approaches that provide a direct and sustained neurotrophic support using pharmacological therapies and mimetics, physical activity, and potential drug delivery systems, including discussion around advantages and limitations for use of each of these systems. Finally, we discuss future directions of biomaterial drug-delivery systems, including the incorporation of heparan sulfate (HS) in conjunction with neurotrophin-based interventions

    Growth retardation and altered autonomic control in mice lacking brain serotonin

    No full text
    Serotonin synthesis in mammals is initiated by 2 distinct tryptophan hydroxylases (TPH), TPH1 and TPH2. By genetically ablating TPH2, we created mice (Tph2−/−) that lack serotonin in the central nervous system. Surprisingly, these mice can be born and survive until adulthood. However, depletion of serotonin signaling in the brain leads to growth retardation and 50% lethality in the first 4 weeks of postnatal life. Telemetric monitoring revealed more extended daytime sleep, suppressed respiration, altered body temperature control, and decreased blood pressure (BP) and heart rate (HR) during nighttime in Tph2−/− mice. Moreover, Tph2−/− females, despite being fertile and producing milk, exhibit impaired maternal care leading to poor survival of their pups. These data confirm that the majority of central serotonin is generated by TPH2. TPH2-derived serotonin is involved in the regulation of behavior and autonomic pathways but is not essential for adult life

    The Inductive Agency of Stress: From Perinatal to Adolescent Induction

    No full text
    The influence of stress agents, whether social, restraint, malnutrition or mild unpredictable, during the fetal-prenatal, infant-postnatal, adolescent or young adult phases of the lifespan generally, but not always, implies disruption of the normal process of development. Several notions of stress including the adaptive calibration model, adaptive emotional processes and arousability, GABAergic integrity and nutrient deficiency, and resilience influence the physiological and behavioural expressions of maternal stress, affecting nursing behaviour and offspring outcome. The adaptive/maladaptive effects of stress in humans are affected by developmental programming of the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems related to stress that may facilitate expressions of resilience. The adaptive/maladaptive effects of stress in animal models outline dysfunctional HPA axis and brain regional alterations of phenotypic expressions that interact with epigenetic mechanisms and developmental plasticity. Maladaptive stress regulation in adolescence is influenced by several factors, not the least being serotonergic, glucocorticoid and regional integrity pertaining to trauma in adolescence. The occurrence of oxidative stress may imply damage but the propensity for hormesis, a notion not unrelated to resilience, provides opportunities for long-lasting health benefits
    corecore