38 research outputs found

    The genome of Eucalyptus grandis

    Get PDF
    Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology

    The genome of Eucalyptus grandis

    No full text
    Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology

    Hardwood tree genomics: unlocking woody plant biology

    Get PDF
    Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan

    Clinical performance validation of the STANDARD G6PD test: A multi-country pooled analysis.

    Get PDF
    IntroductionScreening for G6PD deficiency can inform disease management including malaria. Treatment with the antimalarial drugs primaquine and tafenoquine can be guided by point-of-care testing for G6PD deficiency.Methods and findingsData from similar clinical studies evaluating the performance of the STANDARD G6PD Test (SD Biosensor, South Korea) conducted in Bangladesh, Brazil, Ethiopia, India, Thailand, the United Kingdom, and the United States were pooled. Test performance was assessed in a retrospective analysis on capillary and venous specimens. All study sites used spectrophotometry for reference G6PD testing, and either the HemoCue or complete blood count for reference hemoglobin measurement. The sensitivity of the STANDARD G6PD Test using the manufacturer thresholds for G6PD deficient and intermediate cases in capillary specimens from 4212 study participants was 100% (95% Confidence Interval (CI): 97.5%-100%) for G6PD deficient cases with 60% on the reference assay. The negative predictive value for females with G6PD activity >60% was 99.6% (95% CI 99.1%-99.8%) on capillary specimens. Sensitivity among 396 P. vivax malaria cases was 100% (69.2%-100.0%) for both deficient and intermediate cases. Across the full dataset, 37% of those classified as G6PD deficient or intermediate resulted from true normal cases. Despite this, over 95% of cases would receive correct treatment with primaquine, over 87% of cases would receive correct treatment with tafenoquine, and no true G6PD deficient cases would be treated inappropriately based on the result of the STANDARD G6PD Test.ConclusionsThe STANDARD G6PD Test enables safe access to drugs which are contraindicated for individuals with G6PD deficiency. Operational considerations will inform test uptake in specific settings
    corecore