424 research outputs found

    Baseline characteristics and disease burden in patients in the International Paroxysmal Nocturnal Hemoglobinuria Registry

    Get PDF
    Paroxysmal nocturnal hemoglobinuria is a rare, acquired disease associated with hemolytic anemia, bone marrow failure, thrombosis, and, frequently, poor quality of life. The International PNH Registry is a worldwide, observational, non-interventional study collecting safety, effectiveness, and quality-of-life data from patients with a confirmed paroxysmal nocturnal hemoglobinuria diagnosis or detectable paroxysmal nocturnal hemoglobinuria clone, irrespective of treatment. In addition to evaluating the long-term safety and effectiveness of eculizumab in a global population, the registry aims to improve diagnosis, optimize patient management and outcomes, and enhance the understanding of the natural history of paroxysmal nocturnal hemoglobinuria. Here we report the characteristics of the first 1610 patients enrolled. Median disease duration was 4.6 years. Median granulocyte paroxysmal nocturnal hemoglobinuria clone size was 68.1% (range 0.01-100%). Overall, 16% of patients had a history of thrombotic events and 14% a history of impaired renal function. Therapies included anticoagulation (31%), immunosuppression (19%), and eculizumab (25%). Frequently reported symptoms included fatigue (80%), dyspnea (64%), hemoglobinuria (62%), abdominal pain (44%), and chest pain (33%). Patients suffered from poor quality of life; 23% of patients had been hospitalized due to paroxysmal nocturnal hemoglobinuria-related complications and 17% stated that paroxysmal nocturnal hemoglobinuria was the reason they were not working or were working less. This international registry will provide an ongoing, valuable resource to further the clinical understanding of paroxysmal nocturnal hemoglobinuria

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.Fil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin

    Practical recommendations on the use of lenalidomide in the management of myelodysplastic syndromes

    Get PDF
    Lenalidomide, an oral immunomodulatory agent, has received approval in the USA from the Food and Drug Administration (FDA) for the management of myelodysplastic syndromes (MDS) classified by the International Prognostic Scoring System (IPSS) as low risk or intermediate-1 risk and with a deletion 5q (del(5q)) cytogenetic abnormality. Although some patients with del(5q) have a relatively good prognosis, all del(5q) patients will become transfusion-dependent at some point during the course of their disease. The results of two clinical trials in more than 160 patients with MDS have demonstrated clear therapeutic benefits of lenalidomide, with >60% of patients achieving independence from transfusion during therapy, irrespective of age, prior therapy, sex, or disease-risk assessment. The recommendations presented in this review will aid the safe administration of lenalidomide for the treatment of patients with low-risk or intermediate-1-risk MDS and a del(5q) cytogenetic abnormality, and they will help physicians avoid unnecessary dose reduction or interruption, thus assuring the best efficacy for patients

    Survival improvement over time of 960 s-AML patients included in 13 EORTC-GIMEMA-HOVON trials

    Get PDF
    We report the outcomes of secondary acute myeloid leukemia (s-AML) patients included in one of 13 European Organisation for Research and Treatment of Cancer (EORTC) collaborative AML trials using intensive remission-induction chemotherapy. Among 8858 patients treated between May 1986 and January 2008, 960 were identified as having s-AML, either after MDS (cohort A; n = 508), occurring after primary solid tumors or hematologic malignancies other than MDS (cohort B; n = 361), or after non-malignant conditions or with a history of toxic exposure (cohort C; n = 91). Median age was 64 years, 60 years and 61 years in cohort A, B and C, respectively. Among patients ≤60 years and classified in the cohorts A or B (n = 367), the 5-year overall survival (OS) rate was 28%. There was a systematic improvement in the 5-year OS rate over three time periods (p 60 years of age (n = 502), the OS was dismal, and there was no improvement over time

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity

    Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe

    Get PDF
    The aim of this research is to examine the isotopic characterisation of archaeological fish species as it relates to freshwater, brackish and marine environments, trophic level and migration patterns, and to determine intraspecies variation within and between fish populations in different locations within central and northern Europe. Carbon and nitrogen stable isotope analysis was undertaken on collagen extracted from 72 fish bone samples from eight Mesolithic and Neolithic archaeological sites in this region. Thirty-six (50%) of the specimens analysed produced results with acceptable carbon to nitrogen atomic ratios (2·9–3·6). The fish remains encompassed a wide spectrum of freshwater, brackish and marine taxa (n = 12), which were reflected in the δ13C values (−24·5 to −7·8‰). The freshwater/brackish fish (pike, Esox lucius; perch, Perca fluviatilis; zander, Sander lucioperca) had δ13C values that ranged from −24·2 to −19·3‰, whereas the brackish/marine fish (spurdog, Squalus acanthias; flatfish, Pleuronectidae; codfish, Gadidae; garfish, Belone belone; mackerel, Scomber scombrus) ranged from −14·9 to −9·4‰. Salmonidae, an anadromous taxon, and eel (Anguilla anguilla), a catadromous species, had carbon isotope values consistent with marine origin, and no evidence of freshwater residency (−12·7 to −11·7‰). The δ15N values had a range of 6·2‰ (6·5–12·7‰) indicating that these fish were on average feeding at 1·7 trophic levels higher than their producers in these diverse aquatic environments. These results serve as an important ecological baseline for the future isotopic reconstruction of the diet of human populations dating to the late Mesolithic and early Neolithic of the region
    corecore