111 research outputs found
microRNA Expression Profile of Purified Alveolar Epithelial Type II Cells
Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis. However, knowledge of the expression of the miRNAs and miRNA-regulated networks which control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore, we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling pathways. We purified "untouched by antibodies" ATII cells using a flow cytometric sorting method with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target 21 components of the TGF-β signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and -30c-5p) were down-modulated by TGF-β1 stimulation in human A549 cells, and concomitant up-regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest an important role for miRNAs in maintaining the homeostasis of the TGF-β signaling pathway in ATII cells under physiological conditions
On the problem of interactions in quantum theory
The structure of representations describing systems of free particles in the
theory with the invariance group SO(1,4) is investigated. The property of the
particles to be free means as usual that the representation describing a
many-particle system is the tensor product of the corresponding single-particle
representations (i.e. no interaction is introduced). It is shown that the mass
operator contains only continuous spectrum in the interval
and such representations are unitarily equivalent to ones describing
interactions (gravitational, electromagnetic etc.). This means that there are
no bound states in the theory and the Hilbert space of the many-particle system
contains a subspace of states with the following property: the action of free
representation operators on these states is manifested in the form of different
interactions. Possible consequences of the results are discussed.Comment: 35 pages, Late
Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes
The reproduction of many species is determined by seasonally-driven resource supply. But it is difficult to quantify whether the fecundity is sensitive to short- or long-term exposure to environmental conditions such as rainfall that drive resource supply. Using 25 years of data on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid Australia, we investigate the role of individual body condition, rainfall and temperature as drivers of seasonal and long-term and population-level changes in fecundity (breeding probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical Bayesian framework to account for both immediate and time-lagged effects of climate and other environmental drivers, and possible shifts in reproduction over consecutive seasons. We show that rainfall during summer, when rabbits typically breed only rarely, increased breeding probability immediately and with time lags of up to 10 weeks. However, an earlier onset of the yearly breeding period did not result in more overall reproductive output. Better body condition was associated with an earlier onset of breeding and higher embryo survival. Breeding probability in the main breeding season declined with increased breeding activity in the preceding season and only individuals in good body condition were able to breed late in the season. Higher temperatures reduce breeding success across seasons. We conclude that a better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction will provide crucial insights into how lagomorphs are likely to respond and potentially adapt to the influence of future climate and other environmental change.Konstans Wells, Robert B. O’Hara, Brian D. Cooke, Greg J. Mutze, Thomas A.A. Prowse, Damien A. Fordha
Trauma management incorporating focused assessment with computed tomography in trauma (FACTT) - potential effect on survival
Background
Immediate recognition of life-threatening conditions and injuries is the key to trauma management. To date, the impact of focused assessment with computed tomography in trauma (FACTT) has not been formally assessed. We aimed to find out whether the concept of using FACTT during primary trauma survey has a negative or positive effect on survival.
Methods
In a retrospective, multicentre study, we compared our time management and probability of survival (Ps) in major trauma patients who received FACTT during trauma resuscitation with the trauma registry of the German Trauma Society (DGU). FACTT is defined as whole-body computed tomography (WBCT) during primary trauma survey. We determined the probability of survival according to the Trauma and Injury Severity Score (TRISS), the Revised Injury Severity Classification score (RISC) and the standardized mortality ratio (SMR).
Results
We analysed 4.817 patients from the DGU database from 2002 until 2004, 160 (3.3%) were from our trauma centre at the Ludwig-Maximilians-University (LMU) and 4.657 (96.7%) from the DGU group. 73.2% were male with a mean age of 42.5 years, a mean ISS of 29.8. 96.2% had suffered from blunt trauma. Time from admission to FAST (focused assessment with sonography for trauma)(4.3 vs. 8.7 min), chest x-ray (8.1 vs. 16.0 min) and whole-body CT (20.7 vs. 36.6 min) was shorter at the LMU compared to the other trauma centres (p < 0.001). SMR calculated by TRISS was 0.74 (CI95% 0.40-1.08) for the LMU (p = 0.24) and 0.92 (CI95% 0.84-1.01) for the DGU group (p = 0.10). RISC methodology revealed a SMR of 0.69 (95%CI 0.47-0.92) for the LMU (p = 0.043) and 1.00 (95%CI 0.94-1.06) for the DGU group (p = 0.88).
Conclusion
Trauma management incorporating FACTT enhances a rapid response to life-threatening problems and enables a comprehensive assessment of the severity of each relevant injury. Due to its speed and accuracy, FACTT during primary trauma survey supports rapid decision-making and may increase survival
Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level
Child and family experiences with inborn errors of metabolism: a qualitative interview study with representatives of patient groups
© 2015, The Author(s). Background: Patient-centered health care for children with inborn errors of metabolism (IEM) and their families is important and requires an understanding of patient experiences, needs, and priorities. IEM-specific patient groups have emerged as important voices within these rare disease communities and are uniquely positioned to contribute to this understanding. We conducted qualitative interviews with IEM patient group representatives to increase understanding of patient and family experiences, needs, and priorities and inform patient-centered research and care. Methods: We developed a sampling frame of patient groups representing IEM disease communities from Canada, the United States, and United Kingdom. With consent, we interviewed participants to explore their views on experiences, needs, and outcomes that are most important to children with IEM and their families. We analyzed the data using a qualitative descriptive approach to identify key themes and sub-themes. Results: We interviewed 18 organizational representatives between February 28 and September 17, 2014, representing 16 IEMs and/or disease categories. Twelve participants voluntarily self-identified as parents and/or were themselves patients. Three key themes emerged from the coded data: managing the uncertainty associated with raising and caring for a child with a rare disease; challenges associated with the affected child’s life transitions, and; the collective struggle for improved outcomes and interventions that rare disease communities navigate. Conclusion: Health care providers can support children with IEM and their families by acknowledging and reducing uncertainty, supporting families through children’s life transitions, and contributing to rare disease communities’ progress toward improved interventions, experiences, and outcomes.The study was partially funded by the Rare Disease Foundation
(RDF). In-kind support was provided by the Canadian Inherited Metabolic
Diseases Research Network (CIMDRN) which is funded by the
Canadian Institutes of Health Research (CIHR, grant TR3-119197) and
administered by the University of Ottawa
A Landscape Approach to Invasive Species Management
Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our modelling framework provides a simple approach for identifying the best possible management strategy for invasive species based on metapopulation structure and control capacity. This information can be used by managers trying to devise efficient landscape-oriented management strategies for invasive species and can also generate insights for conservation purposes.Miguel Lurgi, Konstans Wells, Malcolm Kennedy, Susan Campbell, Damien A. Fordha
- …