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Abstract: Alveolar type II (ATII) cells are essential for the maintenance of the alveolar homeostasis.
However, knowledge of the expression of the miRNAs and miRNA-regulated networks which
control homeostasis and coordinate diverse functions of murine ATII cells is limited. Therefore,
we asked how miRNAs expressed in ATII cells might contribute to the regulation of signaling
pathways. We purified “untouched by antibodies” ATII cells using a flow cytometric sorting method
with a highly autofluorescent population of lung cells. TaqMan® miRNA low-density arrays were
performed on sorted cells and intersected with miRNA profiles of ATII cells isolated according to a
previously published protocol. Of 293 miRNAs expressed in both ATII preparations, 111 showed
equal abundances. The target mRNAs of bona fide ATII miRNAs were used for pathway enrichment
analysis. This analysis identified nine signaling pathways with known functions in fibrosis and/or
epithelial-to-mesenchymal transition (EMT). In particular, a subset of 19 miRNAs was found to target
21 components of the TGF-β signaling pathway. Three of these miRNAs (miR-16-5p, -17-5p and
-30c-5p) were down-modulated by TGF-β1 stimulation in human A549 cells, and concomitant up-
regulation of associated mRNA targets (BMPR2, JUN, RUNX2) was observed. These results suggest
an important role for miRNAs in maintaining the homeostasis of the TGF-β signaling pathway in
ATII cells under physiological conditions.

Keywords: alveolar epithelial type II cells; type II pneumocytes; ATII; AECII; flow cytometry;
autofluorescence; miRNAs; pathway analysis; TGF-beta; homeostasis; EMT

1. Introduction

MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regu-
late the expression of ~60% of the human genome by post-transcriptional inhibition of target
mRNAs [1–3]. Since their discovery in 1993, interest in miRNAs has increased, uncovering
their importance in physiological processes, such as metabolism, growth, cell signaling,
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inflammation and cell differentiation, as well as their implication in the pathogenesis of
several diseases [4–7].

It has been shown that miRNAs play an important role in lung development and in
the maintenance of pulmonary homeostasis, which is vital for the preservation of normal
lung function and health [8,9]. Moreover, miRNAs could regulate the interplay of epithelial
cells with other cell types through targeting of multiple pulmonary pathways [10–14].
Taking into consideration that miRNAs affect the expression of a large part of the genome,
the detrimental dysregulation of miRNAs disrupts lung homeostasis and initiates disease
pathogenesis. Indeed, there is emerging evidence that altered miRNA expression in res-
piratory diseases modulates disease phenotypes and ultimately disease progression. For
example, members of the miR-200 and miR-29 families are down-regulated in models of
idiopathic pulmonary fibrosis (IPF) [15,16], and miR-154 has been suggested to promote
fibrosis in interstitial lung disease [17]. Furthermore, the dysregulation of miRNAs was
associated with an increased asthma exacerbation risk [18], as well as with the pathogenesis
of COPD [19,20]. Therefore, expression of miRNAs maintains tissue homeostasis, whereas
when miRNA expression is dysregulated, pathological changes occur. It has been suggested
that some alveolar epithelial type II (ATII) cell-derived miRNAs could play a role in the
maintenance of alveolar homeostasis in response to injury [21].

Two types of epithelial cells—alveolar epithelial type I (ATI) and type II (ATII) cells—
form the alveolus. ATI cells cover ~95% of the alveolar surface to mediate gas exchange
and maintain barrier integrity [22,23]. In lung injury, dying ATI cells slough off, lead-
ing to increased permeability [23–25]. ATII cells, in turn, orchestrate re-epithelialization
and function as progenitors for dead ATI cells, thus restoring barrier function and gas
exchange [26–31]. In mature lungs, proliferation and turnover of cells is relatively low, with
an estimate of 28–35 days for ATII cells. However, this kinetics is enhanced in response
to lung injury [32–34]. On the other hand, failure to repair injured alveolar epithelium is
associated with progression and initiation of many pulmonary diseases [35,36]. Studies
reported that epithelial destruction and ATII cell apoptosis are critical hallmarks in many
pulmonary diseases [37–40]. ATII cells, which cover only ~5% of the alveolar surface [41],
maintain the homeostasis of the alveolus [42–45]. This later role is carried out by surfactant
proteins SP-A, SP-B, SP-C, and SP-D, which are secreted by lamellar bodies within ATII cells,
the only lung epithelial cells which produce and secrete all four surfactant proteins [46,47].
Moreover, surfactant proteins A and D play an additional role in host defense and regula-
tion of immune responses [48–50]. Therefore, any deficiencies or mutations in surfactant
protein synthesis result in the disruption of lung homeostasis [51–56]. Taken together, it
is clear that ATII cells exert several important biological functions and thus are critical
for the maintenance of alveolar homeostasis and promoting pulmonary health [32,57,58].
However, this contrasts with the limited knowledge of the expression of the miRNAs and
miRNA-regulated networks which control homeostasis and coordinate diverse functions
of murine ATII cells.

The goal of this study was, therefore, to identify a set of miRNAs that are critical for
maintenance of ATII cell homeostasis. These miRNAs could be further used to design
miRNA-based therapeutics that target their function. The goal of this study was to identify
miRNAs expressed by murine ATII cells under normal, non-pathologic conditions and to
elucidate potential miRNA-controlled pathways of ATII cell homeostasis. We assumed that
every method for isolating ATII cells will bias at least some microRNAs to some extent. To
circumvent this problem, we decided to use ATII cells obtained by two different isolation
procedures (panning and sorting) and to use the cut set of expressed microRNAs expressed
by both sATII and pATII. We aimed to identify miRNAs that are expressed in all kinds of
putative ATII cell subsets and not in a subset that might be enriched by a single method.
To this end, we used two different methods (panning and sorting) for the purification of
ATII cells to avoid bias in the miRNA composition introduced by a single method. For this
purpose, a three-step approach was followed: first, a protocol for the isolation of highly
pure murine ATII cells was developed using fluorescence-activated cell sorting (FACS) for
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further miRNA profiling. Second, we intersected miRNA profiles from our FACS-based
procedure with those obtained by a previously published protocol relying on negative
selection of ATII cells in antibody-coated plastic dishes [57]. Third, we used this dataset for
in silico pathway enrichment analysis of ATII miRNA targets. In silico target prediction
tools for miRNAs are highly prone to false-positive results. We therefore restricted the
pathway analyses to miRNA–target pairs that have been confirmed previously and are
available through the Ingenuity® software. Finally, we corroborated our findings in human
epithelial alveolar cell line A549. The study limitations include the fact that impurities in
the panned cell fraction were mostly due to contamination with CD31- and CD45-postive
cells, while the sorted cells had a very low number of contaminating cells of unknown
composition, which might have been due to ATII progenitor cells.

2. Materials and Methods
2.1. Animals

Female C57BL/6NCrl wild type 6–12-week-old mice (5 mice per group) were main-
tained under specific pathogen-free conditions in individually ventilated cages. Mice were
fed fortified rodent chow and water ad libitum. All animal experiments were approved by
the Animal Ethics Committee of the government of Upper Bavaria, and all animal studies
were conducted in compliance with the guidelines of the Institutional Animal Care and
Use Committee of the Helmholtz Center Munich, Bavaria, Germany.

2.2. Preparation of Single-Cell Suspensions and Cell Sorting

Single-cell suspensions were prepared as described previously [58] from the whole
lungs of female C57BL/6 mice (6–12 w). The mice were anesthetized by intraperitoneal
injection of MMF (Medetomidine 0.5 µg/g, Midazolam 5.0 µg/g, Fentanyl 0.05 µg/g) and
60 µL of heparin (for blood coagulation inhibition (5 IU/µL, Ratiopharm, Ulm, Germany)).
Lungs were perfused via the right ventricle with 10 mL PBS and 1.5 mL Dispase (BD, CA)
instilled over a tracheal catheter. This was followed by a 0.3 mL instillation of pre-warmed
to 42 ◦C low-melt agarose (1%) (Invitrogen, Darmstadt, Germany). Lungs were removed
and incubated for 45 min in 2.5 mL Dispase at room temperature. Then, lungs were trans-
ferred to a culture dish containing 5 mL medium (DMEM/F12 (1:1) (Gibco, Darmstadt,
Germany) supplemented with 0.04 mg/mL DNase I (AppliChem, Darmstadt, Germany),
3.6 mg/mL D-(+)-Glucose (AppliChem, Germany) and 1% Penicillin/Streptomycin (PAA,
Cölbe, Austria)), and divided into separate lobes. The lobes were then sequentially trans-
ferred into a new culture dish containing 8 ml of medium, where the tissue was gently
teased apart with forceps. The resulting cell suspension was homogenized and transferred
into a 50 mL conical tube. The cell suspension was serially filtered through 100, 20 and
10 µm nylon meshes and then centrifuged at 200× g for 10 min at 15 ◦C. The supernatant
was discarded, and the cell pellet was resuspended in medium (DMEM/F12 (1:1), (Gibco)
containing 3.6 mg/mL D-(+)-Glucose (AppliChem), 1% Penicillin/Streptomycin (PAA) and
2% FBS Gold (PAA)).

Thereafter, single-cell lung suspensions from 3–4 mice were incubated on ice with rat
anti-mouse CD45-APC (IgG2b, κ; BD Pharmingen) and rat anti-mouse CD31-APC (IgG2a,
κ; BD Pharmingen). The antibodies are listed in Table 1. Cells were then washed and
resuspended to a final concentration of 10 × 106/mL in DMEM/F12 (1:1) (Gibco, Germany)
containing 2% FBS Gold (PAA, Cölbe, Austria). After serial filtration through 100, 40 and
35 µm cell strainers (BD Biosciences, Heidelberg, Germany), cells were sorted on a FACS
Aria II (BD Biosciences). Cell doublets were excluded according to FSC-H to FSC-A and
FSC-W to FSC-A characteristics. ATII cells were identified as the CD45/CD31-negative
and autofluorescence (FITC channel)-high population. Cells were sorted using an 85 µm
nozzle tip at 45 psi sheath fluid pressure. Cells isolated by this procedure were designated
as sATII. For RNA isolation, sorted cells were immediately pelleted and stored at −80 ◦C.
Cell sorting was performed immediately after cell extraction.
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Table 1. Antibodies used in this study.

Antibodies for Flow Cytometry and Cell Sorting (ITC: Isotype Control):
Antigen Host Isotype Fluorochrome Clone Company

CD31 Rat IgG2a, k APC MEC 13.3 BD Pharmingen
ITC for CD31 Rat IgG2a, k APC R35-95 BD Pharmingen

CD31 Rat IgG2a, k PE 390 BioLegend
ITC for CD31 Rat IgG2a, k PE RTK2758 BioLegend

CD45 Rat IgG2b, k APC 30-F11 BD Pharmingen
ITC for CD45 Rat IgG2b, k APC A95-1 BD Pharmingen

CD74 Rat IgG2b, k FITC In-1 BD Pharmingen
ITC for CD74 Rat IgG2b, k FITC A95-1 BD Pharmingen

Primary Antibodies for Immunofluorescence Staining:
Antigen Host Isotype Clone Company

Pan-cytokeratin Goat IgG1 C-11 Abcam
E-Cadherin Mouse IgG2a, k 36/E-Cadherin BD Pharmingen
Alpha-SMA Mouse IgG2a 1A4 Sigma

CD31 Rabbit IgG Polyclonal Abcam
Pro-SPC Rabbit IgG Polyclonal Chemicon/Millipore

CCSP Rabbit IgG Polyclonal Upstate/Millipore
CD45 Rat IgG2b, k 30-F11 BD Pharmingen

Secondary Antibodies for Immunofluorescence Staining:
Antigen Host Isotype Fluorochrome Company

Rabbit-IgG (H+L) Goat IgG Alexa Fluor 555 Invitrogen
Mouse-IgG (H+L) Goat IgG Alexa Fluor 555 Inivtrogen

Rat-IgG (H+L) Goat IgG Alexa Fluor 555 Inivtrogen
Goat-IgG (H+L) Donkey IgG Alexa Fluor Inivtrogen

* The CD31-PE antibody used recognizes a different epitope of CD31 than the CD31-APC antibody used
for sorting.

2.3. Flow Cytometry and Immunofluorescence Staining for Purity Assessment

Cells were stained with antibodies for 20 minutes on ice and expression markers were
analyzed with a BD LSR II flow cytometer (BD Biosciences). For immunofluorescence
staining, 1 × 105 cells in 200 µL/chamber were used, and for flow cytometry, 1 × 105 in
50 µL antibody were used. For intracellular staining, cells were fixed and permeabilized
with IntraPrep (Beckman Coulter, Krefeld, Germany) according to the manufacturer’s
protocol. For immunofluorescence staining, cells were centrifuged for 5 min at 200× g
(4 ◦C) on culture slides using a Rotina 420R centrifuge (Hettich, Tuttlingen, Germany) and
dried overnight. Cytospins were fixed with acetone:methanol (1:1) (AppliChem), blocked
with 5% BSA (Sigma-Aldrich, Schnelldorf, Germany) in PBS and stained with primary and
secondary antibodies (Table 1) diluted in 0.1% BSA in PBS. Cells were then fixed with 4%
PFA (Microcos, Germany) and mounted with ProLong® Gold antifade reagent with DAPI
(Invitrogen). The antibodies used in this study are listed in Table 1. For analysis of dead
cells, Propidium iodide (Sigma-Aldrich) was added for 10 min at 4 ◦C prior to the analysis
by flow cytometry.

2.4. Isolation of ATII Cells (Panning)

Lung single-cell suspensions were prepared and primary ATII cell isolation by panning
(designated pATII) was performed as described by Königshoff et al. [57]. Briefly, culture
dishes coated with CD45 and CD16/32 antibodies (Table 1) (15 µL of each antibody/10 mL
DMEM per culture dish) were incubated overnight at 4 ◦C and thereafter washed with
5 mL DMEM twice. Then, 5 mL of single-cell suspension was added to the coated dishes
and incubated for 35 min at 37 ◦C in order to remove lymphocytes and macrophages. To
allow the adherence of fibroblasts, the unattached cells were collected, transferred to new
uncoated dishes and incubated for 35 min at 37 ◦C. The supernatant was then pooled and
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centrifuged at 15 ◦C for 10 min at 200 g. The pellet was stored at −80 ◦C for further RNA
isolation and primary ATII cells were resuspended and processed for flow cytometry.

2.5. Papanicolaou Staining

PAP staining was performed as described by Dobbs LG [59]. In brief, cells were
centrifuged on coverslips and dried overnight. The following day, cells were stained
with hematoxylin and thereafter dipped in lithium carbonate solution. After incubation
with increasing concentrations of ethanol, cells were immersed in xylene:ethanol 1:1 and
thereafter rinsed with xylene. Afterwards, cells were embedded in Entellan.

2.6. TGF-β1 Stimulation of A549 Cells

Human alveolar epithelial A549 cells (ATCC, CCL-185™) were cultured in DMEM/F12
(Gibco) medium supplemented with 10% FBS Gold (PAA). The cells were seeded into 6-well
plates at a density of 2 × 105 cells/well and incubated overnight at 37 ◦C in a humidified
atmosphere at 5% CO2. Prior to the treatment, the cells were starved for 24 h in DMEM/F12
media containing 0.1% FBS and then treated for 72 h with either vehicle control (0.1% BSA
in 4 mM HCl) or recombinant human TGF-β1 (2 ng/mL) (R&D Systems, USA). Thereafter,
cells were lysed with Qiazol (Qiagen, Hilden, Germany) and the lysates were stored at
−20 ◦C until RNA isolation. All stimulations were carried out in triplicate and repeated
independently three times.

2.7. RNA Isolation

Total RNA, including miRNAs, was isolated from primary ATII and A549 cells using
an miRNeasy miRNA purification kit (Qiagen) according to the manufacturer’s instruc-
tions. Total RNA concentration was quantified by absorbance at 26 0nm with a NanoDrop
1000 spectrophotometer (Thermo Scientific), and RNA integrity was assessed by agarose
gel electrophoresis.

2.8. Reverse Transcription and Quantitative PCR of mRNAs

Reverse transcription was performed using random hexamers and MuLV reverse
transcriptase according to the manufacturer’s instructions (Life Technologies, Darmstadt,
Germany), with 350ng total RNA as input. Relative quantification of mRNA expression was
performed using LightCycler® 480 SYBR Green I Master Mix (Roche, Mannheim, Germany)
with the LightCycler® 480 II system (Roche). All primers had an amplification efficiency of
≥92.5% and Cq values were corrected for inter-run variations. The primer sequences are
listed in Table 2. Cq values above 35 were regarded as not expressed. Transcript abundance
was calculated using the ∆∆Cq method [60]. For sATII cells, Hprt was used as a reference
gene and Sftpc mRNA expression served as a calibrator. For A549 cells, the arithmetic mean
of the Cq values for HPRT1 and RNA18S5 served as a normalizer. Outliers were excluded
using a modified Z-score [61]. T-bars, representing the range of expression levels due to
sample variation, were calculated as 2ˆ−(∆∆Cq ± S). S (standard deviation of the ∆Cq
value) was calculated by the formula S = (s1ˆ2 + s2ˆ2)ˆ1/2, where s1 and s2 are the SEMs
of the Cq(target) and Cq(reference) values from four (sATII) or three (A549) independent
experiments, with three technical replicates for each. Statistical significance was calculated
using ∆Cq values and unpaired t-tests (GraphPad Prism).
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Table 2. Primers used for RT-qPCR.

Gene Symbol Species NCBI GenBank Accession Primers (5′->3′) Product Size (bp)

Acta2 Mmu NM_007392 Fwd: GCTGGTGATGATGCTCCCA
Rev: GCCCATTCCAACCATTACTCC 81

Aqp5 Mmu NM_009701 Fwd: CCTTATCCATTGGCTTGTCG
Rev: CTGAACCGATTCATGACCAC 115

Cd74 Mmu NM_001042605 Fwd: GATGGCTACTCCCTTGCTGA
Rev: TGGGTCATGTTGCCGTACT 93

Cdh1 Mmu NM_009864 Fwd: CCATCCTCGGAATCCTTGG
Rev: TTTGACCACCGTTCTCCTCC 89

Hprt Mmu NM_013556 Fwd: CCTAAGATGAGCGCAAGTTGAA
Rev: CCACAGGACTAGAACACCTGCTAA 86

Pecam1 Mmu NM_008816 Fwd: ATCGGCAAAGTGGTCAAGAG
Rev: GGCATGTCCTTTTATGATCTCAG 111

Ptprc Mmu NM_001111316 Fwd: GTCCCTACTTGCCTATGTCAATG
Rev: CCGGGAGGTTTTCATTCC 115

Sftpa1 Mmu NM_023134 Fwd: GGAGAGCCTGGAGAAAGGGGGC
Rev: ATCCTTGCAAGCTGAGGACTCCC 124

Sftpc Mmu NM_011359 Fwd: AGCAAAGAGGTCCTGATGGA
Rev: GAGCAGAGCCCCTACAATCA 153

Tjp1 Mmu NM_009386 Fwd: ACGAGATGCTGGGACTGACC
Rev: AACCGCATTTGGCGTTACAT 112

ACTA2 HSA NM_001141945 Fwd: GGCTCTGGGCTCTGTAAGG
Rev: TTTGCTCTGTGCTTCGTCAC 147

BCL2 HSA NM_000633 Fwd: CTGAGTACCTGAACCGGCA
Rev: GAGAAATCAAACAGAGGCCG 106

BMPR2 HSA NM_001204 Fwd: TGCCCTCCTGATTCTTGG
Rev: CATAGCCGTTCTTGATTCTGC 130

CDH1 HSA NM_004360 Fwd: ATACACTCTCTTCTCTCACGCTGTGT
Rev: CATTCTGATCGGTTACCGTGATC 89

FN1 HSA NM_212482 Fwd: CCGACCAGAAGTTTGGGTTCT
Rev: CAATGCGGTACATGACCCCT 81

HPRT1 HSA NM_000194 Fwd: TTGTTGTAGGATATGCCCTTGAC
Rev: TCTCATCTTAGGCTTTGTATTTTGC 105

JUN HSA NM_002228 Fwd: CAGAGAGACAGACTTGAGAACTTGAC
Rev: GACGCAACCCAGTCCAAC 100

MAP2K4 HSA NM_003010 Fwd: GGCCAAAGTATAAAGAGCTTCTGA
Rev: CAGCGATATCAATCGACATACAT 145

RNA18S5 HSA NR_003286 Fwd: GCAATTATTCCCCATGAACG
Rev: AGGGCCTCACTAAACCATCC 125

RUNX2 HSA NM_001024630 Fwd: TAGATGGACCTCGGGAACC
Rev: GAGGCGGTCAGAGAACAAAC 77

SMAD3 HSA NM_005902 Fwd: GTCAAGAGCCTGGTCAAGAAAC
Rev: GATGGGACACCTGCAACC 136

SNAI1 HSA NM_005985 Fwd: CTTCTCTAGGCCCTGGCTG
Rev: AGGTTGGAGCGGTCAGC 105

TGFBR2 HSA NM_001024847 Fwd: TCTGTGGATGACCTGGCTAAC
Rev: TCATTTCCCAGAGCACCAG 148

TJP1 HSA NM_003257 Fwd: GAGGAAACAGCTATATGGGAACAAC
Rev: TGACGTTTCCCCACTCTGAAA 120

VIM HSA NM_003380 Fwd: AGATGGCCCTTGACATTGAG
Rev: TGAGTGGGTATCAACCAGAGG 146

2.9. Reverse Transcription and Quantitative PCR of miRNAs

Quantification of miRNAs was performed using TaqMan® miRNA assays (Life Tech-
nologies) and the TaqMan® miRNA reverse transcription kit (Life Technologies), according
to manufacturer’s instructions. MiR quantitation was performed on a LightCycler® 480 II
(Roche) instrument using TaqMan® Universal Master Mix II, no UNG (Life Technologies).
TaqMan® miRNA assays used were: hsa-miR-16-5p (Assay ID 000391), hsa-miR-17-5p (As-
say ID 002308), hsa-miR-24-3p (Assay ID 000402), hsa-miR-30c-5p, (Assay ID 000419) and
RNU6B (Assay ID 001093). Relative transcript abundance levels and statistical significance
were calculated as described for mRNAs, with the difference that RNU6B served as a refer-
ence gene and ∆Cq values of vehicle control-treated A549 cells were used as a calibrator.
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2.10. Analysis of TaqMan® Real-Time PCR miRNA Array Data

Total RNA concentration was quantified using a NanoDrop 1000 instrument (Thermo
Scientific), and RNA integrity was assessed with a Bioanalyzer 2100 instrument (Agilent,
Stuttgart, Germany). Samples with OD260/280 ratio of ≥1.85 and with an RNA integrity
number (RIN) of ≥6.5 were used for miR array studies. For miR cDNA synthesis, 135 ng
total RNA was reverse transcribed using stem-loop MegaPlex RT primers (rodent pool sets
A+B v3.0) and an miRNA reverse transcription kit on a PeqStar 96 thermal cycler (Peqlab,
Erlangen, Germany). Pre-amplification of the RT product was performed using TaqMan®

PreAmp Master Mix and PreAmp Primer Mix (rodent pool sets A + B v3.0) on the 7900HT
Fast RT-qPCR system. For miR expression profiling, TaqMan® Array Rodent MiRNA A+B
Card Sets v3.0 containing 641 TaqMan® assays detecting mature murine miRNAs present in
miRBase v15 were used65. Quantitative real-time PCR was performed on a 7900HT Fast RT-
qPCR system using TaqMan® Universal PCR Master Mix. Raw cycle threshold (Cq) values
were determined using Sequence Detection Software (SDS) v2.4 and SDS RQ Manager
1.2.1 (Life Technologies, Germany) with automatic settings for baseline and threshold.
MiRNA assays with replicate differences larger than one Cq were filtered out and miRNAs
with Cq > 32 were regarded as not detectable and excluded from the analysis. Global
mean normalization was used to determine normalized relative quantities (NRQs) 66.
MiRNAs with |NRQ fold differences| of≤1.5 (sorted vs. panned ATII cells) were regarded
as similarly expressed in both cell preparations. Pathway enrichment analysis of ATII
miR targets was carried out using the Ingenuity® software. Target mRNAs were filtered
using the Ingenuity® miRNA target filter to contain only those mRNAs with previously
confirmed miR seed–target interactions. The identified target mRNAs were then associated
with the canonical pathway library contained in the Ingenuity® Knowledge Base. The
significance of the association between the dataset and a given canonical pathway was
measured in two ways: (1) as a ratio of the number of molecules from the dataset that
map to the pathway divided by the total number of molecules that map to the canonical
pathway; and (2) Fisher’s exact test, with Benjamini–Hochberg (BH) correction for multiple
testing, was used to calculate the p-value determining the probability that the association
between the genes in the dataset could be explained by chance alone.

3. Results
3.1. Isolation by Sorting and Assessment of Purity of Primary Murine ATII Cells

We developed a method for the isolation of highly purified “untouched by antibodies”
primary ATII cells from murine lungs based on their autofluorescence [62,63] (Figure 1A).
Critical steps included cell sorting of the ATII cell population based on its autofluorescence
parameters measured in the FITC channel. ATII cells were isolated as negative for lineage
markers of hematopoietic (CD45) and endothelial (CD31) cells (Figure 1A, left panels)
defined as CD45/CD31-APCnegative and autofluorescence-FITChigh. FSC served to remove
doublet cells, while the APC channel was used as a dump channel for CD31positive endothe-
lial cells and CD45positive leukocytes (mainly alveolar macrophages) using APC-conjugated
antibodies for both of these antigens. Flow cytometric re-analysis showed that sorted
cells remained highly autofluorescent (Figure 1A, right panels). Since ATII cells express
MHC class II antigens and the associated invariant chain polypeptide CD74 [63–65], we
investigated CD74 expression of the sorted cells as an indicator of ATII cell purity after the
removal of CD45positive cells, which are also known to express CD74 in the murine lung
(Figure 1B).
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3.2. Confirmation of Epithelial and ATII Identity of the Sorted Cell Population 
To further corroborate the identity of sorted ATII cells, cytocentrifuge preparations 
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Figure 1. FACS strategy and purity of sorted ATII cells. (A) ATII cells were sorted based on high
autofluorescence (FITC-channel) and absence of CD45 and CD31 surface expression (left panels).
CD45 and CD31 expression levels were measured in the same channel (APC) and the gate used
for sorting is highlighted as a thick rectangle. Sorted cells were re-analysed using the same gating
strategy (right panels). Removal of doublets based on FSC characteristics not shown. Dot plots
are representative of four independent experiments. (B) Representative dot plots of cells stained
for CD45, CD31 and intracellular CD74 before and after sorting (ITC: isotype control). (C) Light
microscopic images of Papanicolaou-stained cytospin preparations of cells before and after sorting
(×400). ATII cells show characteristic dark blue inclusions in the cytoplasm (n = 4, mean ± SEM).

Papanicolaou staining (Figure 1C) showed that nearly all of the sorted cells have dark
blue inclusions in the cytoplasm (lamellar bodies)—a characteristic feature of ATII cells [59].

3.2. Confirmation of Epithelial and ATII Identity of the Sorted Cell Population

To further corroborate the identity of sorted ATII cells, cytocentrifuge preparations
were stained with characteristic ATII and non-ATII phenotypic markers. Sorted cells were
highly positive for pro-surfactant protein C (proSP-C) and epithelial cell marker proteins
E-cadherin and cytokeratin (Figure 2). On the other hand, the expression of leukocyte
marker CD45, endothelial marker CD31 and smooth muscle cell marker α-SMA was not
detected in sorted cells. Some very few cells were found to express the Club cell secretory
protein (CCSP) after sorting.
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Figure 2. Immunofluorescence for phenotypic markers on cytocentrifuge preparations of lung
cell suspensions (before sorting) and sorted cells. Cytocentrifuge preparations of whole lung cell
suspensions and sorted cells were stained for phenotypic markers associated with ATII cells (proSP-C,
E-cadherin, cytokeratin), leukocytes (CD45), endothelial cells (CD31), smooth muscle cells (α-SMA)
and Club cells (CCSP). Scale bars represent 10 µm.

3.3. Viability, Purity and Phenotypes of ATII Cells Isolated by Sorting and Panning

Sorting and panning methods were compared based on cell viability (PI exclusion
using flow cytometry) and purity (expression of phenotypic markers using flow cytometry
and qRT-PCRs).

Viable cells were analyzed by flow cytometry as PI-negative. Propidium iodide (PI)
exclusion (Figure 3A,B) confirmed the high viability of cell populations before isolation (PI:
above 98%) and after isolation (PI: above 96%) for sATII and pATII, with a slightly higher
viability (96.7%) for pATII.
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Figure 3. Viability, phenotypic markers and phenotypic expression of sATII and pATII cells before
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(left panels). Viable cells were identified for sATII (upper row) and pATII (lower row) in the whole
lung suspension (before isolation) and isolated cells were identified by PI exclusion (middle and
right panels). (B) Flow cytometric analysis of the viability of sATII and pATII cell populations before
and after isolation as determined by propidium iodide (PI) negativity. (C) Purity of sATII and pATII
cell preparation before and after isolation. ATII cells were defined as CD45/31neg CD74pos cells,
leukocytes as CD45/31-APCpos cells without CD31-PEpos cells and endothelial cells as CD31-PEpos.

cells. Note that the CD31-PE antibody used recognizes a different epitope of CD31 than the CD31-
APC antibody used for sorting. Each value is the mean of four independent experiments for sATII
and two independent experiments for pATII. T-bars show the standard errors of the means (SEMs).

To assess the purity (phenotypic markers) and to determine the fractions of non ATII
cells, such as endothelial cells and leukocytes, sATII and pATII isolated cells were stained
with a PE-conjugated antibody recognizing a different CD31 epitope [66] to the CD31-APC
antibody used for sorting (Figure 3C). ATII cells were defined as CD45neg/CD31neg/CD74pos

cells, and their phenotype was confirmed by qRT-PCR (Sftpc). We observed that the percent-
age of ATII cells in sATII and pATII cell populations increased from 21.0% and 24.0% before
the isolation to 98.4% and 72.6% in the isolated cells, respectively. However, the percentage
of leukocytes (defined as CD45pos. (APC) minus CD31pos. (PE) cells) and endothelial cells
(CD31pos. (PE) cells) in the sATII population decreased from 71.3% and 6.53% before sorting
to 0.38% and 0.09% after the cell sorting, respectively. By comparison, the percentage of
leukocytes in the pATII cells decreased from 68.1% before isolation to 12.0% after isolation,
while endothelial cells in pATII showed a relative increase from 6.69% before sorting to
12.3% in sorted cells (Figure 3B) in four independent experiments. Cells not expressing
CD45, CD31 or CD74 were labeled as other.

3.4. MiRNA Expression Profiling of ATII Cells and Pathway Enrichment Analysis of Downstream
mRNA Targets

ATII cells obtained by sorting (sATII, n = 2 biological replicates) and panning (pATII,
n = 2) were used for miRNA profiling, which showed an expression of 293 miRNAs at
detectable levels. Of these, 111 miRNAs were expressed at similar levels (|FC| ≤ 1.5x) in
both sATII and pATII preparations, and hence were termed ATII miRNAs (Figure 4) and
further used for pathway enrichment analysis. To identify target mRNAs from these
111 miRNAs, we used Ingenuity®’s [67] miR–target filter restricted to experimentally
observed miR–target interactions. By this means, we identified 40 ATII miRNAs with
662 previously validated mRNA interactions in the cut set of 111 ATII miRNAs. Of note,
38 of these miRNAs were associated with 343 mRNAs present in the canonical pathway
library of Ingenuity® (see Figure 4 for an overview of the workflow).

Significant enrichment (adj. p-value < 0.001) of 343 target mRNAs was observed in
143 signaling pathways and 2 metabolic pathways (nicotinate and nicotinamide metabolism,
inositol phosphate metabolism). These pathways were assigned to 20 categories (Table 3).
From the top 20 significant signaling pathways, 9 (marked with an asterisk*) have already
been associated with fibrosis and/or EMT (e.g., PI3K/Akt, PTEN, IGF-1 and TGF-β) [68–75]
(Figure 5). Another 9 of the top 20 pathways have been associated with cancer. Taken
together, these results suggest an important role for ATII miRNAs in controlling cellular
growth, proliferation and development.
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Figure 4. Workflow and miRNA expression profile of ATII cells. Lung single-cell suspensions were generated from unchallenged female C57BL/6NCrl mice. ATII 
cells were isolated either by negative selection (panning, pATII, n = 2) or by cell sorting (sATII, n = 2). Both cell preparations were subjected to miRNA profiling 
using TaqMan® array microfluidic cards (Life Technologies). In pATII and sATII, respectively, 61 and 121 miRNAs had fold differences larger than 1.5 (FC > 1.5). 
A cut set of 111 miRNAs with similar expression levels (|fold difference| ≤1.5) in pATII and sATII was identified and is represented as a bar diagram. For 40 of 
these bona fide ATII miRNAs, experimentally observed interactions with 662 mRNA targets were available in the Ingenuity® database and this information was 
used for pathway enrichment analysis, resulting in 38 miRNAs targeting 343 mRNAs in 145 pathways. Black bars indicate 19 miRNA targeting components of the 
TGF-β signaling pathway. The majority (16 out of 19) of these miRNAs were expressed above median level. A complete list of the miRNAs expressed in ATII cells 
is available as a spreadsheet file (see Table S2 supplementary material). n = 2 represents a biological replicate.

Figure 4. Workflow and miRNA expression profile of ATII cells. Lung single-cell suspensions
were generated from unchallenged female C57BL/6NCrl mice. ATII cells were isolated either by
negative selection (panning, pATII, n = 2) or by cell sorting (sATII, n = 2). Both cell preparations were
subjected to miRNA profiling using TaqMan® array microfluidic cards (Life Technologies). In pATII
and sATII, respectively, 61 and 121 miRNAs had fold differences larger than 1.5 (FC > 1.5). A cut
set of 111 miRNAs with similar expression levels (|fold difference| ≤1.5) in pATII and sATII was
identified and is represented as a bar diagram. For 40 of these bona fide ATII miRNAs, experimentally
observed interactions with 662 mRNA targets were available in the Ingenuity® database and this
information was used for pathway enrichment analysis, resulting in 38 miRNAs targeting 343 mRNAs
in 145 pathways. Black bars indicate 19 miRNA targeting components of the TGF-β signaling
pathway. The majority (16 out of 19) of these miRNAs were expressed above median level. A
complete list of the miRNAs expressed in ATII cells is available as a spreadsheet file (see Table S2
supplementary material). n = 2 represents a biological replicate.

Table 3. Categories of pathways with significant ATII miR–target enrichment.

Pathway Category Pathways per Category Examples of Pathways within Category

Cancer 30 Small and non-small cell lung cancer, p53
Cellular growth, proliferation and development 28 PI3K/Akt, ILK, TGF-β, Integrin, FAK, mTOR

Cytokine signaling 27 Chemokine, IL-6, IL-8, IL-9, IL-10, IL-15, IL-17, IL-22, TNFR1
Cellular immune response 22 CXCR4, HMGB1, NF-κB, dendritic cell maturation

Growth factor signaling 21 IGF-1, EGF, GM-CSF, VEGF, FGF, PDGF
Apoptosis signaling 16 PTEN, death receptor, 14-3-3, JAK/Stat, tight junction signaling
Cell cycle regulation 13 G1/S checkpoint regulation, G2/M DNA damage checkpoint regulation

Intracellular and second messenger 13 Glucocorticoid receptor, ERK/MAPK, Rac, Rho, Gα12/13, PAK
Neurotransmitters and other nervous system signaling 13 Neuregulin, ErbB, Ephrin receptor, axonal guidance

Organismal growth and development 13 Stem cell pluripotency, HGF, BMP, Wnt/β-catenin
Disease-specific pathways 9 Hepatic fibrosis, rheumatoid arthritis, Huntington’s disease
Cardiovascular signaling 7 Cardiac hypertrophy, atherosclerosis, thrombin signaling
Cellular stress and injury 6 HMGB1, HIF1α, p70S6K

Humoral immune response 5 CD40, IL-4, B cell receptor signaling
Nuclear receptor signaling 5 PPARα/RXRα activation, PPAR, RAR activation, VDR/RXR activation

Pathogen-influenced 3 LPS-stimulated MAPK signaling
Transcriptional regulation 2 Role of NANOG and Oct4 in mammalian embryonic stem cell pluripotency

Xenobiotic metabolism 1 Aryl hydrocarbon receptor signaling
Metabolism of cofactors and vitamins 1 Nicotinate and nicotinamide metabolism

Metabolism of complex lipids 1 Inositol phosphate metabolism
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Figure 5. Top 20 enriched signaling pathways targeted by miRNAs expressed in ATII cells. The 111 
miRNAs expressed at similar levels in pATII and sATII were used as inputs for the miRNA target 
filter module in Ingenuity®. The top 20 signaling pathways associated with the dataset are shown. 
The significance of this association is expressed by the probability (grey bars) that the association 
between the targets and the pathway is not due to chance (BH-adjusted p-value, Fisher’s exact test). 
The degree of miRNA interaction within a certain pathway was calculated as the ratio of the number 
of targets that map to a given pathway to the total number of molecules within the pathway (black 
line). The dashed line indicates the significance threshold at p = 0.001. An asterisk highlights signal-
ing pathways that have been associated previously with fibrosis and/or EMT. 
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Figure 5. Top 20 enriched signaling pathways targeted by miRNAs expressed in ATII cells. The
111 miRNAs expressed at similar levels in pATII and sATII were used as inputs for the miRNA target
filter module in Ingenuity®. The top 20 signaling pathways associated with the dataset are shown.
The significance of this association is expressed by the probability (grey bars) that the association
between the targets and the pathway is not due to chance (BH-adjusted p-value, Fisher’s exact test).
The degree of miRNA interaction within a certain pathway was calculated as the ratio of the number
of targets that map to a given pathway to the total number of molecules within the pathway (black
line). The dashed line indicates the significance threshold at p = 0.001. An asterisk highlights signaling
pathways that have been associated previously with fibrosis and/or EMT.

3.5. Key Upstream Regulators of Target mRNAs

In the next step, we looked in silico for potential upstream regulators of all
662 target mRNAs, thereby identifying three miRNAs (16-5p, 30c-5p and 302d-3p) and two
growth factors (TGFβ1 and EGF) as the top upstream regulators of our target mRNAs (see
Table S1). Intriguingly, miR-16-5p and miR-30c-5p showed, also, very high expression lev-
els (above 20×median) in the ATII expression profile (Figure 4, Table S2—Supplementary
Material). TGF-β as well as EGF signaling pathways showed significant enrichment of ATII
miRNA targets. Since deregulation of TGF-β signaling plays a crucial role in chronic lung
diseases [76–78], we further focused on the investigation of ATII miRNAs in the TGF-β
signaling pathway.

The canonical TGF-β signaling pathway of the Ingenuity® pathway library consists of
89 molecules. Nineteen ATII miRNAs (16 of which were expressed above median level; see
Figure 4 and Table S2—Supplementary Material) were found to target 21 TGF-β signaling
components located at several levels in the pathway, from ligands to transcription factors
and target genes (Figure 6 and Table 4). Eleven molecules within the TGF-β pathway were
targeted by up to four miRNAs, and ten miRNAs targeted more than one TGF-β signaling
molecule (Table 4). Overall, these findings indicate a tight regulation of this pathway in
ATII cells by miRNAs and the fact that they are expressed under physiological conditions
indicates a role for these miRNAs in the homeostasis of the TGF-β pathway.
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outlines indicate ATII miRNA targeted members within molecule families (dark grey icons). Red 

Figure 6. Mapping of ATII miRNAs to TGF-β signaling pathway components. This figure represents
the canonical TGF-β signaling pathway from the Ingenuity® pathway library. Orange arrows and
outlines indicate ATII miRNA targeted members within molecule families (dark grey icons). Red
arrowheads symbolize ATII miRNAs. For example, TGFBR2 is a member of the type II TGF-β
receptors, and its mRNA is targeted by miR-17-5p. Compare Table 4 for an overview of interactions.

Table 4. Mapping of ATII-expressed miRNAs to TGF-β pathway signaling components.

miRNA miRBase MIMAT ID Number of Targets Pubmed ID for Exp.
Obs. Interaction mRNA Target Transduction Level,

Molecular Type

Mmu-miR-22-3p 0000531 1 19011694 Bmp7 Extracellular ligand,
growth factorMmu-miR-29a-3p 0000535 2 19342382 Tgfb3

Mmu-miR-30c-5p 0000514 3 18258830 Acvr1

Plasma membrane
receptor, kinase

Mmu-miR-24-3p 0000219 6 17906079 Acvr1b
Mmu-miR-210-3p 0000658 1 19520079 Acvr1b
Mmu-miR-29a-3p 0000535 2 19342382 Acvr2a

Mmu-miR-125a-5p 0000135 1 19738052 Bmpr1b
Mmu-miR-19a-3p 0000651 1 19390056 Bmpr2
Mmu-miR-25-3p 0000652 2 19390056 Bmpr2
Mmu-miR-17-5p 0000649 3 19390056 Bmpr2
Mmu-miR-17-5p 0000649 3 20709030 Tgfbr2
Mmu-miR-18a-3p 0004626 1 19372139 Kras Cytoplasmatic

signaling,
enzyme

Mmu-miR-181a-5p 0000210 2 20080834 Kras
Mmu-miR-16-5p 0000527 4 20065103 Map2k1

Cytoplasmatic
signaling,

kinase

Mmu-miR-16-5p 0000527 4 19861690 Map2k4
Mmu-miR-24-3p 0000219 6 19861690 Map2k4
Mmu-miR-25-3p 0000652 2 19861690 Map2k4
Mmu-miR-24-3p 0000219 6 19502786 Mapk14
Mmu-miR-7a-5p 0000677 2 19072608 Raf1

Mmu-miR-199a-3p 0000230 1 19251704 Smad1

Transcription factor

Mmu-miR-23b-3p 0000125 3 19582816 Smad3
Mmu-miR-24-3p 0000219 6 19582816 Smad3

Mmu-miR-27a-3p 0000537 3 19582816 Smad3
Mmu-miR-140-5p 0000151 1 20071455 Smad3
Mmu-miR-23b-3p 0000125 3 19582816 Smad4
Mmu-miR-24-3p 0000219 6 19582816 Smad4

Mmu-miR-27a-3p 0000537 3 19582816 Smad4
Mmu-miR-23b-3p 0000125 3 19582816 Smad5
Mmu-miR-24-3p 0000219 6 19582816 Smad5

Mmu-miR-27a-3p 0000537 3 19582816 Smad5
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Table 4. Cont.

miRNA miRBase MIMAT ID Number of Targets Pubmed ID for Exp.
Obs. Interaction mRNA Target Transduction Level,

Molecular Type

Mmu-miR-7a-5p 0000677 2 17028171 Fos
Mmu-miR-222-3p 0000670 1 20299489 Fos
Mmu-miR-16-5p 0000527 4 18362358 Jun
Mmu-miR-30c-5p 0000514 3 18668040 Jun
Mmu-miR-30c-5p 0000514 3 21628588 Runx2
Mmu-miR-218-5p 0000663 1 21628588 Runx2
Mmu-miR-16-5p 0000527 4 18449891 Bcl2 Transcription factor

target,
transporter

Mmu-miR-17-5p 0000649 3 19666108 Bcl2
Mmu-miR-181a-5p 0000210 2 20204284 Bcl2

3.6. mRNA Targets Located within the TGF-β Signaling Pathway
3.6.1. Effect of TGF-β1 Treatment on miRNA Expression in A549 Cells

Our in silico analyses indicated that highly expressed ATII miRNAs inhibit TGF-β
signaling. Hence, we hypothesized that TGF-β stimulation might induce a down-regulation
of these inhibitory miRNAs and lead to de-repression of this pathway. Since primary ATII
cells gradually lose their phenotypes in in vitro culture, we studied the effects of TGF-β
stimulation on these inhibitory miRNAs in a human alveolar epithelial A549 cell line.

Initially, we confirmed TGF-β pathway activation by showing down-regulation of
E-Cadherin (CDH1) mRNA and up-regulation of the EMT markers vimentin (VIM), fi-
bronectin (FN1) and snail family zinc finger 1 (SNAI1) in A549 cells upon TGF- β1 stimula-
tion (Figure 7A).

Genes 2022, 13, x  15 of 25 
 

 

3.6. mRNA Targets Located within the TGF-β Signaling Pathway 
3.6.1. Effect of TGF-β1 Treatment on miRNA Expression in A549 Cells 

Our in silico analyses indicated that highly expressed ATII miRNAs inhibit TGF-β 
signaling. Hence, we hypothesized that TGF-β stimulation might induce a down-regula-
tion of these inhibitory miRNAs and lead to de-repression of this pathway. Since primary 
ATII cells gradually lose their phenotypes in in vitro culture, we studied the effects of 
TGF-β stimulation on these inhibitory miRNAs in a human alveolar epithelial A549 cell 
line. 

Initially, we confirmed TGF-β pathway activation by showing down-regulation of E-
Cadherin (CDH1) mRNA and up-regulation of the EMT markers vimentin (VIM), fibron-
ectin (FN1) and snail family zinc finger 1 (SNAI1) in A549 cells upon TGF- β1 stimulation 
(Figure 7A). 

To focus on miRNAs with the highest potential relevance for TGF-β regulation, we 
selected miRNAs with high expression levels (above 20-fold of the median of all expressed 
miRNAs) (Figure 4) and with ≥3 targets in the TGF-β pathway (Figure 6, Table 4). This 
resulted in a selection of four miRNAs: miR-16-5p, -17-5p, -24-3p and -30c-5p. 

MiRs 17-5p and 30c-5p showed a significant reduction at 72 h (~1.8-fold) after TGF-
β1 stimulation compared to the vehicle control, while miR-16-5p and miR-24-3p remained 
unchanged (Figure 7B). 

3.6.2. Effect of TGF-β1 Treatment on Target mRNA Expression in A549 Cells 
Due to these results, we speculated that the putative miRNA-based repression of the 

TGF-β pathway under healthy conditions is released upon stimulation with TGF-β. More-
over, this mechanism, which sustains the homeostasis of TGF-β signaling, might be con-
served in humans. Therefore, we also investigated the expression patterns of ATII miRNA 
targets within the canonical TGF-β pathway upon stimulation with TGF-β1 in A549 cells. 
While the expression of BCL2, MAP2K4, TGFBR2 (data not shown) and SMAD3 mRNAs 
was not, or was only mildly, affected by TGF-β1 stimulation. The expression of BMPR2 
(~5.5-fold, ~5-fold and ~2.5-fold for 6 h, 24 h and 72 h treatment, respectively), JUN (~15-
fold 6 h and 24 h treatment) and RUNX2 (~12-fold and ~22-fold for 24 h and 72 h treatment, 
respectively) mRNAs increased drastically within the investigated time frame (Figure 7C). 
This could indicate that de-repression by down-modulation of miRNAs might, at least in 
part, play a role in the activation of the TGF-β signaling pathway. 

 

Figure 7. Effect of TGF-β1 treatment on the expression of EMT markers (A), miRNAs (B) and TGF-β
pathway miRNA targets (C) in A549 cells. Shown are the mean fold changes (TGF-β1 vs. vehicle
control) at 6, 24 and 72 h after stimulation with human recombinant TGF-β1. The arithmetic mean of
RNA18S5 and HPRT1 mRNA expression served as a normalizer for mRNA quantitation. The small
nuclear RNA RNU6B served as a reference gene for miRNA quantitation. The results were derived
from three independent experiments, with each time point measured in triplicate. T-bars indicate
maximum fold changes based on SEMs for target and reference gene expression. Unpaired t-test, vs.
control treatment: *: p < 0.05, **: p < 0.01, ***: p < 0.001.

To focus on miRNAs with the highest potential relevance for TGF-β regulation, we
selected miRNAs with high expression levels (above 20-fold of the median of all expressed
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miRNAs) (Figure 4) and with ≥3 targets in the TGF-β pathway (Figure 6, Table 4). This
resulted in a selection of four miRNAs: miR-16-5p, -17-5p, -24-3p and -30c-5p.

MiRs 17-5p and 30c-5p showed a significant reduction at 72 h (~1.8-fold) after TGF-β1
stimulation compared to the vehicle control, while miR-16-5p and miR-24-3p remained
unchanged (Figure 7B).

3.6.2. Effect of TGF-β1 Treatment on Target mRNA Expression in A549 Cells

Due to these results, we speculated that the putative miRNA-based repression of
the TGF-β pathway under healthy conditions is released upon stimulation with TGF-β.
Moreover, this mechanism, which sustains the homeostasis of TGF-β signaling, might be
conserved in humans. Therefore, we also investigated the expression patterns of ATII
miRNA targets within the canonical TGF-β pathway upon stimulation with TGF-β1 in
A549 cells. While the expression of BCL2, MAP2K4, TGFBR2 (data not shown) and SMAD3
mRNAs was not, or was only mildly, affected by TGF-β1 stimulation. The expression of
BMPR2 (~5.5-fold, ~5-fold and ~2.5-fold for 6 h, 24 h and 72 h treatment, respectively), JUN
(~15-fold 6 h and 24 h treatment) and RUNX2 (~12-fold and ~22-fold for 24 h and 72 h
treatment, respectively) mRNAs increased drastically within the investigated time frame
(Figure 7C). This could indicate that de-repression by down-modulation of miRNAs might,
at least in part, play a role in the activation of the TGF-β signaling pathway.

4. Discussion

Aberrant miRNA expression has been implicated in the pathogenesis of various ATII-
associated diseases [15–18]. Nonetheless, until now, miRNA expression in healthy controls
and respiratory diseases has been mainly studied in cell lines and whole lung samples. Few
studies have analysed the expression of various miRNAs in primary ATII cells [19,79–81];
however, a complete miRNA expression profile of primary ATII cells has gone unaccounted
for. We therefore aimed to provide intact ATII cells for miRNA profiling and to analyse
the expression of miRNAs in primary “untouched by antibodies” ATII cells from healthy
C57BL/6 mice (commonly used as a model animal for ATII-relevant diseases). We termed
the cells “intact ATII cells” because these cells are “untouched by antibodies”; they were
isolated by taking advantage of the autofluorescence of this cell type and by staining
of the surface markers CD45 of leukocytes and CD31 of endothelial cells. The aim was
to establish a preparation method that will provide intact cells for prospective miRNA
profiling. Therefore, the isolated cells had to have three main properties: (1) “untouched
by antibodies”, (2) high viability and (3) high purity. Thereafter, we aimed to study the
regulated pathways of the target mRNAs which could provide an insight into the role of
miRNAs in healthy ATII cells.

Studies utilising freshly isolated primary ATII cells are necessary to understand molec-
ular pathways regulating diverse functions of this cell type. However, this research remains
highly elusive since the isolation of highly pure, viable and proliferative ATII cells for func-
tional studies is fraught with challenges [82–85]. First, ATII cells in vitro undergo pheno-
typic change to resemble ATI cells [61,86,87]. Second, no cell line exists to complement these
studies and represent the broad extent of known ATII properties. Therefore, an efficient
method for ATII cell isolation is required. Many different isolation methods for ATII cells
from mice have been described, including magnetic bead separation [58,88], panning [57,82]
and cell-sorting [67,89,90]. However, it is always challenging to isolate highly pure ATII
cells. First, extracellular ATII-specific markers for mice are rare and, second, positive
selection of ATII cells using ATII-specific markers (CD74 and EpCAMhigh/T1αneg) [64,91]
could affect certain cellular pathways and therefore change the activation status of purified
cells [86,87,92]. It is assumed that EpCAM is involved in diverse intracellular processes,
such as cell signaling, migration, differentiation and proliferation [92]. Monoclonal anti-
bodies to EpCAM were described to induce antibody-dependent cellular cytotoxicity in
colorectal cancer therapy [86]. The antibody to CD74, which was recently documented
as an ATII-specific marker [64], stimulated the cleavage of the CD74 cystolic fragment,
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We therefore developed a new method for the isolation of ATII cells based on the
autofluorescence characteristics of cell populations, thus allowing the isolation of “un-
touched by antibodies” ATII cells with high viability and purity. It was reported that
ATII cells characterized as CD45neg/CD31neg/Sca-1neg/CCSPneg showed high autofluo-
rescence [62]. The presence of a CD45pos. population in our preparations with a slightly
higher autofluorescence than that of ATII cells might have indicated macrophages [63].
Autofluorescence arises from endogenous fluorophores which are present in cells and
extracellular matrix [89,90]. However, it is not very clear which endogenous fluorophore
causes ATII cell autofluorescence. High metabolic activity due to surfactant production
and consequently the presence of large amount of metabolic enzymes, such as NAD(P)H
and flavins, might contribute to ATII cell autofluorescence [93]. Moreover, porphyrins,
present in hemoglobin that has been found in primary ATII cells, exhibit natural autoflu-
orescence [94,95]. However, no study to date has used autofluorescence for the isolation
of ATII cells. We used autofluorescence and staining of surface markers of the other cell
types to isolate “untouched by antibodies” highly pure sATII cells by FACS. The pop-
ulation of isolated and FACS-sorted ATII cells showed high purity in terms of CD45-
and CD31-negativity and CD74-positivity. The few contaminating cells were within the
CD45/CD31neg CD74neg. populations. The absence of CD31- and CD45-expressing cells
and the expression of epithelial marker proteins (i.e., cytokeratin and E-cadherin) on nearly
all sorted cells, as demonstrated by immunofluorescence, confirmed the ATII phenotype
of the sorted cells. Expression of CCSP in a few sorted cells might have been due to the
presence of Club cells, which have high autofluorescence and co-express proSP-C and
CCSP after enzymatic dissociation and sorting [58,96]. Moreover, bronchioalveolar stem
cells (BASCs), which develop into bronchiolar and alveolar epithelial cells, also co-express
CCSP and proSP-C [19,96]. Nonetheless, they are unlikely to have contaminated the sorted
population, as they exhibit low autofluorescence [96]. Another possibility is the presence
of ATII progenitor cells that express CCSP and are highly autofluorescent due to their
high metabolic activity [97,98]. The existence of endothelial cells post-pATII cell isolation
protocol was most likely due to the fact that the “panning” protocol does not use antibodies
to deplete endothelial cells.

The purity of the isolated sATII and pATII cells was also confirmed by the high
expression and abundance of ATII epithelial and phenotypic markers. Isolated sATII and
pATII cells expressed moderate levels of Aqp5, which was in accordance with other studies,
showing that murine ATII cells express AQP5, unlike human and rat lung cells, where
AQP5 is exclusively ATI-specific [99–103].

In order to dissect the functional role of miRNAs in ATII cells under normal, physiolog-
ical conditions, miRNA profiling was performed. We used a cut set of miRNAs expressed
at similar levels in ATII cells isolated by two different methods. This approach was used
in order to identify miRNAs that are common to all ATII cells and not only restricted to
distinct ATII cell subsets that are enriched by one of the isolation methods. Furthermore,
this method reduces the activation of pathways which could be triggered during the isola-
tion process and thus minimizes the changes in miRNA expression. Enrichment of target
mRNAs with binding sites for cut set of ATII miRNAs in distinct pathways argues for
biological relevance of a given pathway in these cells. This way, miRNAs can serve as
a tool to detect or prioritize important pathways that might be overlooked in primarily
mRNA-based identification strategies.

A cut set of 111 ATII miRNAs was used for pathway enrichment analysis in order
to identify miRNA-regulated pathways involved in ATII cell homeostasis. Of 145 classi-
fied pathways with statistically significant target enrichment, only two pathways regulate
metabolic processes. This could indicate that under normal physiological conditions,
miRNAs in ATII cells may not play an important role in metabolic pathway regulation.
However, since our approach was limited to miRNA–target interactions that were experi-



Genes 2022, 13, 1420 17 of 25

mentally observed to date, it is possible that more miRNA targets and relevant pathways
may be identified in ATII cells in the future.

The role of miRNAs was further confirmed by pathway analysis, which revealed that
top network functions of the ATII miRNA target gene set were associated with pathways
related to “cancer” and to “fibrosis and/or EMT”. These findings are in agreement with
those of a study by Fujino and colleagues, who showed that ATII cells isolated from human
biopsy samples expressed genes enriched for positive regulation of cell differentiation
and lung development [91]. Further, these results are in accordance with a recent study
by Zacharias and colleagues [104]. Specific molecular pathways that have been already
associated with these functions in ATII cells include TGF-β, Wnt/β-Catenin and growth
factor signaling (e.g., EGF, HGF, KGF) [59,93,105,106]. In line with these studies, we have
found that TGF-β and EGF are among the top five upstream regulators. Among miRNAs
expressed above the median level, 16 miRNAs have their targets in the canonical TGF-β
pathway, such that two of these miRNAs are within the top five upstream regulators. In
this context, TGF-β is a potent EMT inducer that functions in cellular proliferation and
differentiation, as well as in apoptosis, and therefore plays a crucial role in the regulation
of epithelial homeostasis [107–109]. Similarly, the EGF protein family promotes EMT by
stimulation of alveolar epithelial cell proliferation and migration [107,110]. Therefore, it
has been suggested that there is cross-talk between these growth factors within the TGF-β
pathway; however, the exact mechanism is unknown [105,106,111,112].

Several reports have shown that miRNAs are able to regulate these pathways. We
found that miR-30a-3p/5p, miR-30c-5p and miR-30e-3p/5p were amongst those with the
highest expression in ATII cells. Along this line, miR-30c-5p was among the top upstream
regulators with three targets within the TGF-β pathway, while miRs 30a/e-3p were the
most abundant. Down-regulation of miR-30 was observed in lung samples from IPF and
NSCLC patients [13,79]. Transfection of hepatocyte cell line AML12 with these miRNAs
resulted in decreased TGF-β1-induced EMT, while TGF-β1 treatment resulted in down-
regulation of these miRNAs [113]. Moreover, Zhou and colleagues further showed that
miR-30a down-regulates TGF-β1-induced EMT and peritoneal dialysis-related peritoneal
fibrosis through down-regulation of snai1 [114]. Therefore, the high expression of three
miR-30 family members in the present study could suggest that this family plays a cru-
cial role in suppressing EMT in ATII cells under normal physiological conditions. Four
members of the miR17~92 cluster (miR-19a, -17, -20a and 18a) revealed high to moder-
ate expression in ATII cells in our study, with miR-17-5p having three targets within the
canonical TGF-beta signaling pathway. The activation of this cluster in neuroblastoma cells
was reported to regulate TGF-β signaling components [115]. In addition, it was reported
that this cluster regulates cell proliferation and collagen synthesis by targeting the TGF-β
pathway [116]. Further, the current study shows that the expression of miR-16-5p is among
the top upstream regulators, with four targets within the TGF-β pathway, thus suggesting
a crucial role for this miRNA in ATII homeostasis. It was shown that overexpression of
miR-16 inhibited EMT-mediated factors Snail and Twist in vitro in a prostate cancer cell
line [117]. It was reported that p53, a tumor suppressor, induces miR-16, whereas the
down-regulation of p53 leads to EMT-related stem cell phenotypes [118,119], suggesting
that miRNAs are regulators of the p53-controlled epithelial phenotype in ATII cells under
normal physiological conditions. Hence, miRNAs are important in protection from fibrosis
and cancer progression and in the maintenance of the ATII cell phenotype.

The miR-200 family member, miR-429, was also strongly expressed in our ATII cell
preparation. ATII cells play an important role in the pathogenesis of IPF due to loss
of their regenerative capacity [120,121]. Moreover, ATII cells isolated from IPF patients
demonstrate impairment in their transdifferentiation into ATI cells [122], which triggers
dysfunction in epithelial–mesenchymal transition (EMT) in the alveolar epithelium and
leads to fibrosis [83,123]. miR-200 family members were reported to control these pathways,
such that they were shown to be down-regulated in the lungs of IPF patients as well
as in mice with experimental pulmonary fibrosis [15]. Interestingly, it was described
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that miR-200 family can restore normal regenerative function in exhausted senescent
IPF pneumocytes by induction of transdifferentiation of primary human IPF ATII cells
into ATI cells [81]. Moimas et al. [81] have demonstrated that upon transfection of IPF
ATII cells with synthetic mimics of the entire miR-200 family, i.e., with miR-200b-3p and
miR-200c-3p, they were able to restore the capability of exhausted senescent IPF ATII
cells to transdifferentiate into ATI cells. It was shown that miR-429 reversed EMT in
metastatic ovarian cancer cells [113] and was down-regulated in TGF-β1 treated MDCK
cells [124]. The miR-200 family is a well-known inhibitor of TGF-β-induced EMT, and
it is highly expressed in almost all epithelial cell types, except cells of mesenchymal
origin [125–127]. Studies have shown that low expression of miR-200 family members is
associated with poor prognosis in cancers, such as ovarian, gastric and thyroid cancers
and many more [128–131]. Moreover, Tellez and colleagues further reported that miR-200
family members were repressed in immortalized human bronchial epithelial cells during
EMT induced by tobacco carcinogens [132]. However, the overexpression of miR-200 family
members in a lung adenocarcinoma mouse model restricted the cancer cells to an epithelial
phenotype and stopped metastases [133]. In line with this, various functional studies
showed that the down-regulation of miR-200 induced EMT, whereas its overexpression
provoked mesenchymal-to-epithelial transition (MET) and inhibited cancer cell motility
by repression of ZEB1 and ZEB2 [127,134–136]. Thus, both transcriptional factors could
be involved in the TGF-β- pathway via a negative loop with miR-200. Therefore, the
expression of miR-30- and miR-200 family members shows that ATII miRNAs play an
important role in maintaining epithelial homeostasis. The finding that miRNAs targeting
TGF-β signaling components are down-regulated by TGF-β is in accordance with our
findings for down-modulation of miR-17-5p and -30c-5p in TGF-β1-treated A549 cells and
supports the idea that under physiological conditions this pathway is at least partially
controlled by miRNAs.

Recent studies have indicated that downstream molecules of the TGF-β signaling
pathway interfere with miRNA expression either by regulating their transcriptional or
post-transcriptional processing via interaction with components of the miRNA biogenesis
machinery or by modulating epigenetic marks on miRNA promoters [137,138]. Addition-
ally, miRNAs target components of the TGF-β signaling pathway, resulting in a complex
network of signaling loops that contribute to the modulation of this pathway (reviewed
in [139,140]). Since primary ATII cells gradually lose their phenotypes during in vitro cul-
ture, we decided to study the effects of TGF-β stimulation in the human alveolar epithelial
cell line A549 that features hallmark characteristics of ATII cells [141].

MiR-16-5p and miR-30c-5p are top upstream regulators of the investigated set of target
genes and have four (MAP2K1, MAP2K4, JUN and BCL2) and three (ACVR1, JUN and
RUNX2) experimentally observed targets in the TGF-β signaling pathway, respectively.
MiR-17-5p has three experimentally observed targets in the TGF-β signaling pathway
(TGFBR2, BMPR2 and BCL2) and is a member of the miR-17~92 cluster, which has been
associated with inhibition of TGF-β signaling. Most importantly, all of these ATII miRNAs
have been associated with inhibition of TGF-β signaling [113,115,142–145]. Additionally,
Corcoran et al. [146] reported that a set of miRNAs expressed in ATII cells is down-regulated
in A549 cells upon TGF-β stimulation. These findings are in agreement with our findings
regarding the down-regulation of miR-30c and miR-17-5p in A549 cells. Furthermore, it
was shown that TGF-β-induced target gene expression is tightly controlled through down-
regulation of miRNAs via TGFβ-induced transcription factors, such as AP-1, SMAD3/4
and NF-κB [146]. Of note, we found that TGF-β1 is a predicted upstream regulator for the
set of validated mRNA targets interacting with the ATII-expressed miRNAs, of which 19
had experimentally observed targets in the canonical TGF-β pathway of the Ingenuity®

database. This finding supports the idea of a complex interaction between TGF-β signaling
and miR regulation in ATII cells already under normal conditions, hence underlining the
importance of miRNAs for sustaining TGF-β pathway homeostasis. Additionally, Pandit
et al. showed the down-regulation of 18 miRNAs—7 of which were also expressed in
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our ATII cells—in lung tissues of patients with idiopathic pulmonary fibrosis, indicating
that disturbance of this mechanism might contribute to disease progression [79]. Finally,
homeostatic down-modulation of TGF-β signaling by miRNAs expressed under normal
conditions might contribute to the inhibition of ATII to ATI trans-differentiation [147].

In summary, these findings suggest that autofluorescence characteristics of murine
lung cells can be exploited to isolate highly pure, untouched ATII cells and that miRNAs
expressed in ATII cells contribute to cellular homeostasis by the modulation of proliferation
and cell-activation pathways. Based on our data for miRNA expression in ATII cells, under
normal conditions, and enrichment of miRNA targets in the TGF-β pathway, we hypoth-
esize that miRNAs might represent valuable tools for the early detection of pathological
conditions, such as fibrotic lung diseases and lung cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13081420/s1, Table S1: Upstream regulators. Table S2: ATII miR expression profile.
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