3 research outputs found

    Impaktkivimite sekundaarne muutumine hüdrotermaalsetes ja diageneesi-murenemise protsessides: Ries’i meteoriidikraater, Saksamaa

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Lõuna-Saksamaal paiknev ligikaudu 24-kilomeetrise läbimõõduga Reis’i meteoriidikraater (14,3–14,5 Ma) on üks paremini säilinud impaktstruktuure, olles heaks mudelstruktuuriks impakti järgsete protsesside uurimisel. Riesi kraater on ühtlasi ka üks esimesi impaktstruktuure, kus on kirjeldatud ja oletatud impakt-indutseeritud hüdrotermaalset mineralisatsiooni. Hüdrotermaalset muutust on seostatud ennekõike süeviitse kompleksiga ning on kirjeldatud detailsemalt Newsom et al. (1986), Osinski (2003,2004) ja Osinski et al (2004) töödes. Kraatrit täitvate süeviitide hüdrotermaalseid muutuseid/ilminguid iseloomustab sekundaarne savimineralisatsioon ja teoliidistumine, millega kaasneb varajane K-metasomatism koos albitiseerumise ning kloritiseerumise ilmingutega temperatuuridel ~200–300°C (Osinski 2005). Samas pole pindmiste süeviitide hüdrotermaalne mineralisatsioon nii selgelt märgatav/eristatav ning seda on seostatud impaktklaasi muutumisel tekkima hakanud montmorilloniidi tüüpi savifaasiga (Newsom et al 1986), mille alusel on hinnatud pindmiste süeviitide muutumistemperatuuriks < 130 °C. Antud uurimuse mineraloogilised, geokeemilised ja stabiilsete isotoopide analüüsid näitavad, et hüdrotermaalsete protsesside mõju Riesi meteoriidikraatri pindmiste süeviitide muutumisele praktiliselt puudub või ei ole eristatav ning valdav süeviitide muutumine toimub pindmisel murenemisel, madala pH (5–7) ja ioonkontsentratsiooniga (nt sademete vesi) veelises keskkonnas. Erinevalt pindmistest süeviitidest iseloomustavad kraatrit täitvate süeviitide hüdrotermaalseid muutuseid/ilminguid sekundaarne savimineralisatsioon ja tseoliidistumine ning satabiilsete isotoopide uuringud näitavad, et võrreldes pindmiste süeviitidega on nende muutumine toimunud kõrgematemperatuurilises (~100 °C) fluidis, mille pH varieerus >7–8 ning mis võis olla kõrgenenud ioonkontsentratsiooniga. Selline fluidikoostis tõendab sisemiste süeviitide muutumisel tekkinud savimineraalide hüdrotermaalset päritolu anioonhüdrolüütiliselt neutraliseeritud ja lahustuvate komponentide suhtes rikastunud fluidist.The 24-km diameter Ries crater, in Germany, is one of the best-preserved terrestrial complex impact structures; providing a good opportunity to study the evolution of the post-impact cooling in impact craters. The mineralogical, geochemical and stable isotope studies of the surficial and crater- fill suevites from the Ries crater has provided additional constraints on the mineralogical alteration of the Ries impactites and on the origin and evolution of the (geothermal) fluids that were involved in the formation of alteration mineralogy. Previous studies (Newsom et al., 1986; Osinski, 2005) have proposed that the Ries crater suevites have been altered by post-impact aqueous and hydrothermal fluids. Based on mineralogical grounds Newsom et al. (1986) suggested that the surficial suevite was altered at temperatures < 130 °C, and Osinski suggested that the crater-fill suevite was altered at temperatures from 200 – 300 °C. Our mineralogical, geochemical and stable isotope studies suggests that the alteration in surficial suevites is driven mainly by ambient low-temperature weathering, rather than hydrothermal processes and the alteration occured at lower pH and in slightly acidic environment (percolation of meteoric water), showing that the smectite in surficial suevites precipitated in equilibrium with meteoritic fluids. However, alteration in crater filling sequence occurred in the presence of meteoric water-dominated fluid circulation at higher temperatures (40 to 110 °C) than the surficial suevites, but possibly within a normal thermal gradient. The modeled δ11B composition of crater-fill suevites, on the other hand, indicate that the alteration in the crater-fill suevites took place at elevated pH (>8–9). The elevated pH of the alteration fluids in crater filling suevites is possibly related to the effective removal of the available H+ ions in hydrothermal fluid (evolved meteoric water) through anion hydrolysis of impact glass and primary silicates

    The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian

    No full text
    International audienceNorthwest Africa (NWA) 8159 is an augite-rich shergottite, with a mineralogy dominated by Ca-, Fe-rich pyroxene, plagioclase, olivine, and magnetite. NWA 8159 crystallized from an evolved melt of basaltic composition under relatively rapid conditions of cooling, likely in a surface lava flow or shallow sill. Redox conditions experienced by the melt shifted from relatively oxidizing (with respect to known Martian lithologies, similar to QFM) on the liquidus to higher oxygen fugacity (similar to QFM + 2) during crystallization of the groundmass, and under subsolidus conditions. This shift resulted in the production of orthopyroxene and magnetite replacing olivine phenocryst rims. NWA 8159 contains both crystalline and shock-amorphized plagioclase (An(5062)), often observed within a single grain; based on known calibrations we bracket the peak shock pressure experienced by NWA 8159 to between 15 and 23 GPa. The bulk composition of NWA 8159 is depleted in LREE, as observed for Tissint and other depleted shergottites; however, NWA 8159 is distinct from all other martian lithologies in its bulk composition and oxygen fugacity. We obtain a Sm-Nd formation age of 2.37 +/- 0.25 Ga for NWA 8159, which represents an interval in Mars geologic time which, until recently, was not represented in the other martian meteorite types. The bulk rock Sm-147/Nd-144 value of 0.37 +/- 0.02 is consistent with it being derived directly from its source and the high initial epsilon(143)(Nd) value indicates this source was geochemically highly depleted. Cr, Nd, and W isotopic compositions further support a unique mantle source. While the rock shares similarities with the 2.4-Ga NWA 7635 meteorite, there are notable distinctions between the two meteorites that suggest differences in mantle source compositions and conditions of crystallization. Nevertheless, the two samples may be launch-paired. NWA 8159 expands the known basalt types, ages and mantle sources within the Mars sample suite to include a second igneous unit from the early Amazonian.(C) 2017 Elsevier Ltd. All rights reserved
    corecore