12 research outputs found

    Transmission-based noise spectroscopy for quadratic qubit-resonator interactions

    Full text link
    We develop a theory describing the transient transmission through noisy qubit-resonator systems with quadratic interactions as are found in superconducting and nanomechanical resonators coupled to solid-state qubits. After generalizing the quantum Langevin equations to arbitrary qubit-resonator couplings, we show that only the cases of linear and quadratic couplings allow for an analytical treatment within standard input-output theory. Focussing for the first time on quadratic couplings and allowing for arbitrary initial qubit coherences, it is shown that noise characteristics can be extracted from input-output measurements by recording both the averaged fluctuations in the transmission probability and the averaged phase. Our results represent an extension to the field of transmission-based noise spectroscopy with immediate practical applications.Comment: 8 pages, 3 figure

    Theory of qubit noise characterization using the long-time cavity transmission

    Full text link
    Noise induced decoherence is one of the main threats to large-scale quantum computation. In an attempt to assess the noise affecting a qubit we go beyond the standard steady-state solution of the transmission through a qubit-coupled cavity in input-output theory by including dynamical noise in the description of the system. We solve the quantum Langevin equations exactly for a noise-free system and treat the noise as a perturbation. In the long-time limit the corrections may be written as a sum of convolutions of the noise power spectral density with an integration kernel that depends on external control parameters. Using the convolution theorem, we invert the corrections and obtain relations for the noise spectral density as an integral over measurable quantities. Additionally, we treat the noise exactly in the dispersive regime, and again find that noise characteristics are imprinted in the long-time transmission in convolutions containing the power spectral density.Comment: 18 pages, 4 figure

    A singlet triplet hole spin qubit in planar Ge

    Get PDF
    Spin qubits are considered to be among the most promising candidates for building a quantum processor. GroupIV hole spin qubits have moved into the focus of interest due to the ease of operation and compatibility with Si technology. In addition, Ge offers the option for monolithic superconductor-semiconductor integration. Here we demonstrate a hole spin qubit operating at fields below 10 mT, the critical field of Al, by exploiting the large out-of-plane hole g-factors in planar Ge and by encoding the qubit into the singlet-triplet states of a double quantum dot. We observe electrically controlled g-factor-difference-driven and exchange-driven rotations with tunable frequencies exceeding 100 MHz and dephasing times of 1 μ\mus which we extend beyond 150 μ\mus with echo techniques. These results demonstrate that Ge hole singlet-triplet qubits are competing with state-of-the art GaAs and Si singlet-triplet qubits. In addition, their rotation frequencies and coherence are on par with Ge single spin qubits, but they can be operated at much lower fields underlining their potential for on chip integration with superconducting technologies

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Natural heavy-hole flopping mode qubit in germanium

    No full text
    Flopping mode qubits in double quantum dots (DQDs) allow for coherent spin-photon hybridization and fast qubit gates when coupled to either an alternating external or a quantized cavity electric field. To achieve this, however, electronic systems rely on synthetic spin-orbit interaction (SOI) by means of a magnetic field gradient as a coupling mechanism. Here we theoretically show that this challenging experimental setup can be avoided in heavy-hole (HH) systems in germanium (Ge) by utilizing the sizeable cubic Rashba SOI. We argue that the resulting natural flopping mode qubit possesses highly tunable spin coupling strengths that allow for one- and two-qubit gate times in the nanosecond range when the system is designed to function in an optimal operation mode which we quantify.publishe

    Dynamics of Hole Singlet-Triplet Qubits with Large g-Factor Differences

    No full text
    The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.publishe

    Dynamics of hole singlet-triplet qubits with large g-factor differences

    Get PDF
    The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights into the hole spin-orbit interaction, necessary for optimizing future qubit experiments
    corecore