1,586 research outputs found

    High-spin structures as the probes of proton-neutron pairing

    Get PDF
    Rotating N=ZN=Z nuclei in the mass A=58−80A=58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector npnp pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t=0t=0 npnp pairing has been found.Comment: Invited talk presented at the XIII Nuclear Physics Workshop, Kazimierz Dolny, Sept. 27 - Oct. 1, Poland; submitted to International Journal of Modern Physics

    On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems

    Get PDF
    Minimum cost spanning extension problems are generalizations of minimum cost spanning tree problems in which an existing network has to be extended to connect users to a source. This paper generalizes the definition of irreducible core to minimum cost spanning extension problems and introduces an algorithm generating all elements of the irreducible core. Moreover, the equal remaining obligations rule, a one-point refinement of the irreducible core ispresented. Finally, the paper characterizes these solutions axiomatically. The classical Bird tree allocation of minimum cost spanning tree problems is obtained as a particular case in our algorithm for the irreducible core.Networks;Cost Allocation;costs and cost price

    Bird's tree allocations revisited

    Get PDF
    Game Theory;Cost Allocation

    Minimum cost spanning extension problems: The proportional rule and the decentralized rule

    Get PDF
    Minimum cost spanning extension problems are generalizations of minimum cost spanning tree problems (see Bird 1976) where an existing network has to be extended to connect users to a source. In this paper, we present two cost allocation rules for these problems, viz. the proportional rule and the decentralized rule. We introduce algorithms that generate these rules and prove that both rules are refinements of the irreducible core, as defined in Feltkamp, Tijs and Muto (1994b). We then proceed to axiomatically characterize the proportional rule.Networks;Cost Allocation;costs and cost price

    DNA Torsional Solitons in Presence of localized Inhomogeneities

    Full text link
    In the present paper we investigate the influence of inhomogeneities in the dynamics and stability of DNA open states, modeled as propagating solitons in the spirit of a Generalized Yakushevish Model. It is a direct consecuence of our model that there exists a critical distance between the soliton's center of mass and the inhomogeneity at which the interaction between them can change the stability of the open state.Furtherly from this results was derived a renormalized potential funtion.Comment: RevTex, 13 pages, 3 figures, final versio

    Role of three-body interactions in formation of bulk viscosity in liquid argon

    Get PDF
    With the aim of locating the origin of discrepancy between experimental and computer simulation results on bulk viscosity of liquid argon, a molecular dynamic simulation of argon interacting via ab initio pair potential and triple-dipole three-body potential has been undertaken. Bulk viscosity, obtained using Green-Kubo formula, is different from the values obtained from modeling argon using Lennard-Jones potential, the former being closer to the experimental data. The conclusion is made that many-body inter-atomic interaction plays a significant role in formation of bulk viscosity.Comment: 4 pages, 3 figure

    Bird's tree allocations revisited

    Get PDF

    Electric Dipole Moments of Neutron-Odd Nuclei

    Full text link
    The electric dipole moments (EDMs) of neutron-odd nuclei with even protons are systematically evaluated. We first derive the relation between the EDM and the magnetic moment operators by making use of the core polarization scheme. This relation enables us to calculate the EDM of neutron-odd nuclei without any free parameters. From this calculation, one may find the best atomic system suitable for future EDM experiments.Comment: 4 page

    Nuclear deformation and neutrinoless double-β\beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd nuclei in mass mechanism

    Full text link
    The (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+→0+0^{+}\to 0^{+} transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the β−β−\beta ^{-}\beta ^{-} decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced B(E2B(E2:0+→2+)0^{+}\to 2^{+}) transition probabilities, quadrupole moments Q(2+)Q(2^{+}), gyromagnetic factors g(2+)g(2^{+}) as well as half-lives T1/22νT_{1/2}^{2\nu} for the 0+→0+0^{+}\to 0^{+} transition and the available experimental data. In the present work, we study the (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay for the 0+→0+0^{+}\to 0^{+} transition in the mass mechanism and extract limits on effective mass of light as well as heavy neutrinos from the observed half-lives T1/20ν(0+→0+)T_{1/2}^{0\nu}(0^{+}\to 0^{+}) using nuclear transition matrix elements calculated with the same set of wave functions. Further, the effect of deformation on the nuclear transition matrix elements required to study the (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay in the mass mechanism is investigated. It is noticed that the deformation effect on nuclear transition matrix elements is of approximately same magnitude in (β−β−)2ν(\beta ^{-}\beta ^{-})_{2\nu} and (β−β−)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay.Comment: 15 pages, 1 figur

    Effect of doping and oxygen vacancies on the octahedral tilt transitions in the BaCeO3 perovskite

    Full text link
    We present a systematic study of the effect of Y doping and hydration level on the structural transformations of BaCeO3 based on anelastic spectroscopy experiments. The temperature of the intermediate transformation between rhombohedral and orthorhombic Imma phases rises with increasing the molar fraction x of Y roughly as (500 K)x in the hydrated state, and is depressed of more than twice that amount after complete dehydration. This is explained in terms of the effect of doping on the average (Ce/Y)-O and Ba-O bond lengths, and of lattice relaxation from O vacancies. The different behavior of the transition to the lower temperature Pnma orthorhombic phase is tentatively explained in terms of progressive flattening of the effective shape of the OH ion and ordering of the O vacancies during cooling.Comment: 8 pages, 5 figure
    • …
    corecore