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Abstract

Minimum cost spanning extension problems are generalizations of minimum

cost spanning tree problems (see Bird 1976) where an existing network has to be

extended to connect users to a source. In this paper, we present two cost allocation

rules for these problems, viz. the proportional rule and the decentralized rule.

We introduce algorithms that generate these rules and prove that both rules are

re�nements of the irreducible core, as de�ned in Feltkamp, Tijs and Muto (1994b).

We then proceed to axiomatically characterize the proportional rule.

Key words : TU-games, cost allocation rules, minimum cost spanning trees.

1 Introduction

Consider a group of villages, each of which needs to be connected directly or via other
villages to a source. Such a connection needs costly links. Each village could connect
itself directly to the source, but by cooperating, the linking costs might be reduced.

Suppose some of the links are already present and can freely be used by the villages.
This situation gives rise to two problems, an Operations Research problem of �nding the

minimum cost extension that together with the original network connects every village
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to the source, and a cost allocation problem of allocating the cost of a minimal cost

extension to the villages in a reasonable way.

The special case of the cost minimization problem where no network is initially present

is an old problem in Operations Research, and Bor
�

uvka (1926) provided algorithms to

construct a tree connecting every village to the source with minimal total cost. Later,

Kruskal (1956), Prim (1957) and Dijkstra (1959) found similar algorithms. A historic

overview of this minimization problem can be found in Graham and Hell (1985).

Claus and Kleitman (1973) introduced the cost allocation problem for the special

case of minimum cost spanning tree problems, in which no network is initially present,

whereupon Bird (1976) treated this problem with game-theoretic methods and for each

minimum cost spanning tree proposed a cost allocation associated with it.
In this paper we treat the Operations Research problem and the cost allocation prob-

lem simultaneously. One reason is that they are two sides of the same problem, and

solving one side gives insight into the other side. For example, examining Bird's tree

allocation rule for minimum cost spanning tree problems, one sees that it is intimately
linked to the algorithm for �nding minimum cost spanning trees that is described in
Prim (1957) and Dijkstra (1959) (cf Feltkamp, Tijs and Muto (1994a)). This suggested
allocation rules that correspond to the other algorithms for �nding minimum cost span-

ning trees, viz. the algorithm of Kruskal (1956), and the decentralized algorithm that was
�rst described in Bor

�

uvka (1926). Furthermore, when axiomatizing cost allocation solu-
tions that associate a cost allocation to each minimal extension, knowing which extension
a particular allocation is associated with is useful. Hence, in our approach, a solution
to a minimum cost spanning extension (mcse) problem speci�es a set of extensions, and
for each extension, associated allocations.

Moreover, we extend the class of problems to include problems where a network is
initially present. This is motivated by the consideration that an mcse problem that is
half solved can now be reconsidered as an mcse problem, after which the solution given
for the original problem and the continuation problem can be compared.

In Feltkamp, Tijs and Muto (1994b), we also address the minimum cost spanning

extension problem and generalize the irreducible core, that was introduced in Bird (1976)
for minimum cost spanning tree problems. In most cases, this irreducible core consists of
a continuum of points. We here propose two re�nements of the irreducible core, viz. the
proportional and the decentralized rule, and axiomatically characterize the proportional

rule.

The outline of this paper is as follows.
Section 2 formally presents minimum cost spanning extension problems and intro-

duces the algorithm that generates the proportional rule, while section 3 introduces the
algorithm for the decentralized solution. Instead of solving the Operations Research
and cost allocation problems consecutively, they are integrated : the cost of a link in

a minimum cost spanning extension is allocated at the same moment the link is con-

structed. Section 4 characterizes the set of allocations generated by the proportional

rule axiomatically, using e�ciency and converse consistency. Section 5 concludes.

Preliminaries and notations

We refer to any elementary textbook on graph theory for an understanding of
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graph theory, but recall some de�nitions to show the notational conventions. A graph

G =< V;E > consists of a set V of vertices and a set E of edges. An edge e incident

with two vertices i and j is identi�ed with fi; jg3. For a graph G =< V;E > and a set

W � V ,

E(W ) := fe 2 E j e � Wg

is the set of edges linking two vertices in W . Similarly, for a subset E0 of E,

V (E0) := fv 2 V j there exists an edge e 2 E 0 with v 2 eg

is the set of vertices incident with E0.

The complete graph on a vertex set V is the graph KV =< V;EV >, where

EV := ffv;wg j v;w 2 V and v 6= wg:

A path from i to j in a graph < V;E > is a sequence (i = i0; i1; : : : ; ik = j) of vertices

such that for all 1 � l � k, the edge fil�1; ilg lies in E. A cycle is a path of which the

begin and end-points coincide. Two vertices i; j 2 V are connected in a graph < V;E >

if there is a path from i to j in < V;E >. A subset W of V is connected in < V;E > if
every two vertices i; j 2 W are connected in the subgraph < W;E(W ) >. A connected
set W is a connected component of the graph < V;E > if no superset of W is connected.
If W � V , the set of connected components of the graph < W;E(W ) > is denoted by
W=E. A connected graph is a graph < V;E > with V connected in < V;E >. A tree is
a connected graph that contains no cycles.

With many economic situations in which costs have to be divided one can associate

a cost game (N; c) consisting of a �nite set N of players and a characteristic function

c : 2N ! IR, with c(;) = 0. Here c(S) represents the minimal cost for coalition S � N

if it secedes, i.e. if people of S cooperate and can not count upon help from people
outside S.

The economic situations in the sequel involve a set N of users of a source �. For a

coalition S � N , we denote S [ f�g by S�.
The core of a cost game (N; c), is de�ned by

Core(c) := fx 2 IRN j
X
i2N

xi = c(N) and
X
i2S

xi � c(S) for all S � Ng:

A game with a non-empty core is called balanced.

The cardinality of a set S will be denoted by jSj. For two vectors x 2 IRS and
y 2 IRT , where S and T are two disjoint coalitions, we denote (x; y) 2 IRS[T the vector

with components

(x; y)k :=

(
xk if k 2 S;

yk if k 2 T:

Furthermore, for two coalitions S � T and a vector x 2 IRT , we denote xS the restriction

of x to S. For a coalition S � N , the symbol 1S is used to denote the vector in IRN with

coordinates

(1S)k :=

(
1 if k 2 S;

0 if k 2 N n S:

3Because we do not consider multigraphs : two vertices are connected by at most one edge.
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For any coalition S, the simplex �S is de�ned by

�S := fx 2 IRS
+ j
X
i2S

xi = 1g:

2 Mcse problems and the proportional solution

Formally, a minimum cost spanning extension (mcse) problem M = < N;�; w;E > con-

sists of a �nite set N of agents, each of whom wants to be connected to a common source,

denoted by �. The non-negative cost of constructing a link fi; jg between the vertices i

and j in N � � N [ f�g is denoted by w(i; j). There is a set E of already constructed

edges, which can be used when connecting agents to the source.
The problem we address is how to construct a network connecting all agents to the

source, in the cheapest possible way, and how to allocate the costs of such a network

among the agents. We address the two questions simultaneously by allocating the cost
of an edge at the moment it is constructed. Inspired by Bird (1976), we analyze the cost
allocations that we provide with game theoretic methods.

To an mcse problem M = < N; �;w;E >, we associate a cooperative cost game

< N; cM >, where the worth cM(S) of a coalition S is the minimal cost of an extension
of the present network by building edges between components containing members of

S�, such that in the extended network, S is connected to the source. This means players
in S are connected to the source via a path which can use the edges that are present,
but which does not use components disjoint with S�.

Example 2.1 In the mcse game associated with the graph depicted in �gure 1, coali-
tion f1g can link itself to the root using player 2, but not player 3. Hence, c(f1g) = 3.
Similarly, the costs for other coalitions are : c(f2g) = 3; c(f3g) = 1; c(f1; 2g) = 3;
c(f1; 3g) = 1 + 1 = c(f2; 3g) = c(f1; 2; 3g).
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Figure 1: The edge f1; 2g is initially present.

In general,
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cM(S) := min

8<
:
X
e2E0

w(e) j
S� � CE0

�
and E0 contains only edges

between components containing members of S�

9=
;

for all S � N , where CE0

�
is the component of the source � in the graph < N �; E [E0 >.

Other de�nitions of cost games are possible, notably by allowing a coalition S to use

only the edges between members of S�, but this variant has a larger core than the game

we de�ne. Hence, if we prove that our game is balanced, we also prove that the variant

is balanced. Furthermore, in our game, the players in the component of the source are

dummy players, and that is not true for the variant. Note also that cM(S) can be

attained by an extension with precisely jS�=Ej � 1 edges.

In this section and the next one, we propose cost allocation rules for mcse problems
that will prove to yield core elements of the associated mcse games.

First, de�ne for an mcse problem M the initial obligation oi of a player i by

oi :=

(
1

jCij
if � 62 Ci

0 if � 2 Ci

(2:1)

where Ci is the component of < N�; E > containing player i. The interpretation is that
if player i is in the component of the source, he has no obligation to contribute to the
edge costs, but if he is not in the component of the source, then the component Ci of
i has to pay one edge, or more precisely, portions of edges summing up to 1, and this
obligation is divided equally among the players in Ci.

The proportional solution is constructed by the following algorithm : construct the
edges of a minimum cost spanning extension as in Kruskal's algorithm. Each time an
edge is constructed, its cost is divided proportionally to the remaining obligations, among
the players in the components being linked. More precisely :
Algorithm 2.2 (the proportional rule)

input : an mcse problem < N; �; w;E >

output : a sequence of edges leading to an mcse and a cost allocation

1. Given M� < N; �; w;E >, de�ne

t = 0 the initial stage,

� = jN�=Ej � 1 the number of stages,

E0 = E the initial edge set,

o0i = oi for all i 2 N , the initial obligation is de�ned

in equation 2.1:

2. t := t+ 1.

3. At stage t, given Et�1, choose a cheapest edge et such that the graph < N�; Et�1[

fetg > does not contain more cycles than < N �; Et�1 >.
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4. If Ct is the connected component just formed by adding the edge et to the graph

< N�; Et�1 >, de�ne the vector f t = (f ti )i2N of fractions the players contribute by

f tk =

8>>>><
>>>>:

ot�1iX
l2Ct

ot�1l

if i 2 Ct;

0 if i 62 Ct:

5. De�ne the remaining obligation after stage t by otk := ot�1k � f t
k for all k 2 N .

6. De�ne Et := Et�1 [ fetg.

7. If t < � , go to step 2.

8. De�ne E = (e1; : : : ; e�).

9. De�ne PROE (M) :=
�X

t=1

f tw(et):

Note that at every stage, the total obligation of a component that does not contain
the source equals 1, and the obligation of any player in the component of the source
equals 0. Hence, in step 4, the denominator equals 1 or 2, depending on whether Ct

contains the source or not. In particular, it is never zero.
As the allocation generated by this algorithm depends on the choices of edges made,

we de�ne the proportional rule (or solution) by

PRO(M) :=
[
f(E ; PROE (M)) j E is obtained by the algorithm 2.2g:

Note however, this algorithm constructs exactly one sequence of fraction vectors per
sequence of edges chosen. As there are only �nitely many minimal cost spanning exten-
sions, PRO(M) is �nite for any mcse problem M.

Applying the algorithm the the problem of example 2.1, we see that o0 = (:5; :5; 1). A

possible �rst edge is edge f�;3g. Then f1 = (0; 0; 1)=1 and the remaining obligation of
player three is zero, while that of the others is unchanged. The next edge has to be f1; 3g,

which implies f2 = (:5; :5; 0)=1. Hence the allocation is 1(:5; :5; 0)+1(0;0; 1) = (:5; :5; 1).

The only other possible �rst edge is f1; 3g, yielding f1 = (:5; :5; 1)=2 and o2 =
(:5; :5; 1) � (:5; :5; 1)=2 = (:25; :25; :5). Then f�; 3g is the second edge, yielding f2 =

(:25; :25; :5)=1. Hence, the allocation is 1(:25; :25; :5) + 1(:25; :25; :5) = (:5; :5; 1). So the
two sequences yield the same allocation. This is due to the small size of the problem.

Feltkamp, Tijs and Muto (1994b) de�ned the irreducible core IC(M) of an mcse
problem M and proved that it is generated by an algorithm that constructs a network
in the same way as is done in algorithm 2.2, but that associates with every sequence of

edges constructed a set of valid sequences of fraction vectors. For a sequence (e1; : : : ; e�)

of edges, valid sequences of fraction vectors are those sequences (f 1; : : : ; f � ) that satisfy :

� Each component of the original graph that does not contain the source has to pay

fractions of edges that total 1.
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� At each stage, the players in the component that contains the source do not con-

tribute to the cost of the edge constructed.

� At each stage, the cost of the edge that is constructed is shared by the players in

the two components that it joins.

Moreover, it is proved that if E = (e1; : : : ; e�) is a sequence of edges of an mcse of the

mcse problem M ordered by non-decreasing weight and F = (f1; : : : ; f � ) is valid for E ,

then

xE ;F :=
�X

t=1

f tw(et) 2 IC(M): (2:2)

It is straightforward to see that for an mcse problem M, the proportional algorithm

generates a list of edges E ordered by non-decreasing weights and a valid sequence F

of fraction vectors. Hence, PROE (M) = xE ;F 2 IC(M). So, the set of allocations

generated by the proportional solution is a re�nement of the irreducible core, which is a

subset of the core. In particular, the allocations generated by the proportional solution
are all core elements of the mcse game (see Feltkamp, Tijs and Muto (1994b)). This
proves that mcse games are balanced.

3 The decentralized solution

The proportional algorithm, the algorithm for the irreducible core in Feltkamp, Tijs and
Muto (1994b) and the algorithm generating Bird's tree allocations rule in Feltkamp, Tijs
and Muto (1994a) are centralized algorithms, in the sense that one edge is constructed
per stage. However, one might imagine a situation in which at a certain stage in the

construction, each component greedily starts to build the cheapest edge that links it to
another component. If two components want to build the same edge, they meet in the
middle, and each pays half, after which each has a remaining obligation to build half an
edge in the following stages. Of course, the component that contains the source never
contributes to any edge, so whenever a component is joined to the component of the

source, it has to pay the whole edge, and thereafter, it does not contribute any more.

The idea of building a minimal cost spanning tree in this way dates back in its �rst
documented full formulation to Bor

�

uvka (1926a), (1926b). He considered minimum cost
spanning tree problems, but the distinction is minimal if the only goal is to construct
a network. It is only if one wants to allocate costs that the di�erence is essential.

This decentralized algorithm will build a network in fewer stages than all previously
described (centralized) algorithms, though the stages themselves are larger. A more

precise formulation of the algorithm is :
Algorithm 3.1 (the decentralized rule)

input : an mcse problem < N; �; w;E >

output : a network and a cost allocation
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1. Given M� < N; �; w;E >, de�ne

t = 0 the initial stage,

E0 = E the initial edge set.

o0i = oi for all i 2 N , the initial obligation is de�ned in equation 2.1 :

2. t := t+ 1.

3. At stage t, each component C of < N�; Et�1 > that does not contain the source

chooses a cheapest edge etC linking C to another component of < N�; Et�1 >.

4. De�ne the vector f t = (f tk)k2N of fractions by

f tk =

8><
>:
ot�1k if no other component chooses etC
ot�1k =2 if another component also chooses etC
0 if k 2 C�;

for all k 2 N . As usual, Ct�1
k denotes the component containing k in the graph

< N�; Et�1 > constructed at stage t� 1.

5. De�ne the remaining obligation after stage t by otk := ot�1k � f tk for all k 2 N .

6. De�ne Et := Et�1 [ fetC j C 2 N�=Et�1 and � 62 Cg:

7. If the graph < N�;E t > is not yet connected, go to step 2.

8. De�ne � to be the number of stages.

9. De�ne the decentralized value DEC(M) by

DECk(M) :=
�X

s=1

f skw(e
s

Cs�1

k

)

for all k 2 N .

This algorithm can generate a network with cycles when applied to an arbitrary mcse

problem, but on generic mcse problems, where all weights are di�erent, it does not.

De�nition 3.2 An mcse problem < N; �;w;E > is called generic if for every pair e 6= ~e

of edges,

w(e) 6= w(~e):

Note that on the class of generic mcse problems, for each component C 2 N�=Et, there

is only one edge etc that can be chosen in step 3, so the decentralized solution constructs

a unique mcse and allocation on this class of problems.

Theorem 3.3 If the mcse problem < N; �; w;E > is generic, the decentralized algo-

rithm generates an mcse.
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Proof :

Let < N; �; w;E > be a generic mcse problem. Clearly, algorithm 3.1 leads to a

connected graph. The only way that a cycle can be introduced in this graph is that after

a stage t � 1, there are a number (say p) of components C1; : : : ;Cp, such that at stage

t, for each 1 � q < p, component Cq constructs an edge eq connecting it to component

Cq+1, while component Cp constructs an edge ep connecting it to component C1. Now

because Cq prefers eq to eq�1 for all 1 < q � p and C1 prefers e1 to ep, it follows that

w(e1) � w(e2) � � � � � w(ep) � w(e1): (3:1)

But this can only hold if all inequalities in 3.1 are equalities, which is impossible in a

generic mcse problem.

Suppose the network < N�; E� > constructed by algorithm 3.1 is not an mcse of

< N�; E >. Then there exists a minimum cost spanning extension < N�; ~E > that sat-

is�es X
e2 ~E

w(e) <
X
e2E�

w(e):

Now consider the earliest stage t in which there is a component C of < N �; Et�1 >

that constructs an edge etC that is not present in ~E. This means that all edges in

< N�; Et�1 > are present in ~E. Adding etC to ~E introduces a cycle, which has to include

another edge ~e linking C to another component of < N �; Et�1 > because etC has only

one end-point in C. Now etC was the cheapest edge linking C to another component

of < N�; Et�1 >, so w(~e) > w(etC), and deleting ~e from ~E [ fetCg produces a spanning

extension which has smaller cost than < N�; ~E >. This is a contradiction, hence the

algorithm produces an mcse. 2

The next theorem states that applied to a generic mcse problem, the decentralized

algorithm constructs core elements of the associated mcse game.

Theorem 3.4 On the class of generic mcse problems, the allocations generated by the

decentralized algorithm are elements of the irreducible core.

Proof : To prove this, we only need to prove that the allocations generated by the

decentralized algorithm can also be generated by a sequence of edges that can be gener-

ated by algorithm 2.2, together with fraction vectors that are valid for this sequence, as

de�ned in section 2.

Let M � < N; �; w;E > be a generic mcse problem. Construct the sequence eE
of edges as follows : at each stage t, order the edges constructed at stage t by the

decentralized algorithm by increasing cost into a sequence E t. Then chain these sequences

together and de�ne eE � (~e1; : : : ; ~en) := E1 � � � E� ;

where � is the number of stages of the algorithm. Construct the sequence eF =

( ~f1; : : : ; ~fn) of fraction vectors by
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~f sk :=

(
f t
k if ~es = et

C
t�1

k

;

0 otherwise:

One easily sees that eF is valid for eE and that

DEC(M) =
nX

s=1

~f sw(~es):

Moreover, in any component C t of < N �; Et > that does not contain the source and

that is constructed at stage t by the decentralized algorithm, there is exactly one edge et

that is constructed by two components (call these C0 and C1) of < N�; Et�1 >, all other

edges are constructed by only one of the two components which they connect. Now

this edge et is cheaper than any other edge ~etC that is constructed at stage t by any

component C of < N�; Et�1 > that is a subset of Ct. To see this, consider the `path'

C = Cp; ep = ~etC ; : : : ; C2; e2; C1; e1 = et;C0 constructed at stage t (see �gure 2).

'

&

$

%
C0

et = e1

'

&

$

%
C1

e2-

'

&

$

%
C2

e3-� � �
ep = ~etC-

'

&

$

%
Cp = C

Figure 2: The `path' between Cp and C0.

For all 0 < q < p, the component Cq prefers edge eq to edge eq+1. Hence,

w(et) = w(e1) < w(e2) < : : : < w(ep) = w(~et): (3:2)

Moreover, any edge e that has exactly one end-point in Ct, has exactly one end-point

in a component Ct�1 that is a `building stone' of C t. Hence, because e was not chosen

by Ct�1, it has higher cost than etCt�1, the edge that Ct�1 chose. Using equation 3.2, we

obtain

w(e) > w(etCt�1) > w(et);

where et is the unique edge in Ct that is constructed at stage t by two components of

< N�; Et�1 >. This holds for all edges e that have exactly one end-point in C t, hence

also for the edge et+1Ct chosen by C t at stage t+ 1.

Hence an edge that is chosen by a component C at a stage t is more expensive than the

edge chosen in the previous stage by two components of < N�;E t�1 > that are subsets

of the component C. Now for a player k, this means that the edges for which player k

pays according to the algorithm 3.1, are ordered by increasing cost in the sequence E .

Hence if the sequence E 0 is constructed by sorting the edges in eE by increasing cost and

F 0 is de�ned accordingly :

f 0s := ~f t for the unique t such that e0s = ~et;
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then E 0 is a sequence of edges of an mcse ordered by non-decreasing weight and because

for any player k 2 N the relative order of the subsequence of edges to which k contributes

is unperturbed in the transition from E to E 0, F 0 is valid for E 0. Moreover,

DEC(M) = x
eE ;
eF = xE

0

;F
0

which lies in the irreducible core of M. 2

4 Axiomatic characterization of the proportional

rule

In sections 2 and 3, we introduced two solution rules of mcse problems. We axiomatically

characterize the proportional rule in this section.

We de�ne a solution of mcse problems as a function  assigning to every mcse problem

< N; �; w;E >, a set

 (< N; �; w;E >) �

8><
>:((e1; : : : ; e�); x) j

< N �; E [ fe1; : : : ; e�g > is a

connected graph and x 2 IRN satis�esP
i2N xi �

P�
t=1w(e

t):

9>=
>; :

We enumerate a few possible properties of a solution  of mcse problems.

De�nition 4.1

E�  is e�cient if for all ((e1; : : : ; e� ); x) 2  (M), for all M, E [ fe1; : : : ; e�g is a

minimal cost spanning extension and

X
i2N

xi =
�X

t=1

w(et):

MC  has theminimal contribution property if in every mcse problem, every component

that does not contain the source contributes at least the cost of a minimum cost

edge that connects two components. In formula : for all M � < N; �; w;E >,

for all (E ; x) 2  (M), for each component C 2 N �=E that does not contain the

source, X
i2C

xi � minfw(e) j e connects two components of < N�; E >g:

FSC  has the free for source component property if for all M, for all (E ; x) 2  (M),

we have

xi = 0

for all i in the component of the source in the graph < N�; E >.

ET  satis�es equal treatment if for all M, for all (E; x) 2  (M), for all components

C 2 N �=E, and for all players i and j 2 C,

xi = xj:
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We now introduce edge-reduced mcse problems.

De�nition 4.2 Given an mcse problem M � < N; �; w;E > and an edge e = fi; jg

that connects two components of < N�; E >, de�ne the edge-reduced mcse problem

Me =< N; �; w;E [ feg > :

Note that the edge-reduced problem is a smaller problem than the original problem :

less edges have to be constructed, but it has the same number of players as the original
problem.

The next three properties of a solution  relate the solution of a mcse problem and

the solutions of its edge-reduced mcse problems.

De�nition 4.3

ES  satis�es equal share if for any M, for all all ((e1; : : : ; e� ); x) 2  (M) with e1

connecting two components C1 and C2, there exists a (eE; ~x) 2  (Me
1

) such that

X
i2C1

(xi � ~xi) =
X
i2C2

(xi � ~xi):

In e�ect, this axiom requires that the two components connected in the �rst step of a
solution participate in equal amounts in the cost of the edge which connects them.

Loc  is local if for all M, for all ((e1; : : : ; e�); x) 2  (M), where e1 connects the

components C1 and C2 into a component C, there exists an ~x 2 IRC such that

((e2; : : : ; e�); (~x; xNnC)) 2  (Me
1

):

This axiom requires that adding an extra (minimum cost) edge in an mcse problem
should not a�ect the players outside the component formed by adding this edge.

Cocons  satis�es converse consistency if for all M, for all (E; x) 2 E�

N� � IRN such
that the solution  0 de�ned by

 0(M0) =

(
 (M) [ f(E ; x)g if M0 =M

 (M0) if M0 6=M
(4:1)

satis�es E�, MC, FSC, ET, ES and Loc, it holds that

(E ; x) 2  (M):

The upshot of this last axiom is that one should not be able to enlarge a solution without

losing at least one of the previous axioms.

Proposition 4.4 The proportional solution satis�es E�, MC, FSC, ET, ES, Loc and
CoCons.
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Proof : The proportional solution has E�, FSC and MC because the set of allocations
generated by the proportional algorithm is a re�nement of the irreducible core and

all allocations in the irreducible core satisfy these properties (cf. Feltkamp, Tijs and

Muto (1994b)). ET is a direct consequence of the de�nition of the proportional solution.
The proportional solution is local : take ((e1; : : : ; e� ); x) 2 PRO(M). Let e1 connect

two components C1 and C2 into a component C. Then eE = (e2; : : : ; e�) leads to a

minimum cost spanning extension of Me
1

. Let eF be the unique sequence of fractions

that corresponds to eE in the algorithm 2.2 and de�ne ~x = x
eE ;
eF . Then ~xk = xk for

k 62 C. Hence the proportional solution is local.

To prove that the proportional solution satis�es the equal share property, take an

mcse problem M and take a component C of < N �; E >. Any two players i and j 2 C

have the same initial obligations. For any sequence E constructed by the algorithm, the

remaining obligations at a stage t are only dependent on the remaining obligations in the

previous stage, so by an induction argument, i and j have the same remaining obligations
throughout all stages. Since in the unique sequence of fractions F corresponding to E in
the proportional algorithm, the fractions of edges that i and j pay are proportional to

the remaining obligations, it follows that f t
i
= f t

j
for all t and hence xE ;F

i
= xE ;F

j
. So

the proportional solution has the equal share property.
To prove it satis�es CoCons, take an mcse problem M and take

((e1; : : : ; e� ); x) 2 E�

N� � IRN

such that the solution PRO' as de�ned in equation 4.1 satis�es E�, MC, FSC, ET, ES
and Loc. Suppose e1 connects the two components C1 and C2 into C. By locality, there
exists an ~x 2 IRC such that

((e2; : : : ; e� ); (~x; xNnC)) 2 PRO(Me
1

):

Hence, there exist fractions vectors (f2; : : : ; f � ) that are constructed by the proportional
algorithm together with the sequence (e2; : : : ; e� ), such that

(~x; xNnC) = x(e
2
;:::;e

� );(f2;:::;f� ): (4:2)

By e�ciency of the proportional solution on M and Me
1

,

X
k2C

(xk � ~xk) = w(e1): (4:3)

We now distinguish two cases :

� If either of C1 or C2 (say C1) contains the source, by FSC and equal treatment, we
obtain

xk � ~xk =

(
0 if k 2 C1;

w(e1)=jC2j if k 2 C2:
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In this case, de�ne f1 by

f1
k
=

(
0 if k 62 C2;

1=jC2j if k 2 C2:

Then x = x(e
1
;:::;e

� );(f1;:::;f� ) and ((e1; : : : ; e�); x) 2 PRO(M):

� If neither of C1 or C2 contain the source, by ET we obtain

xk =

(
z1 if k 2 C1

z2 if k 2 C2

for some z1 and z2 satisfying

z1jC1j+ z2jC2j =
X
k2C

xk = w(e1) +
X
k2C

~xk = w(e) +
X
k2C

�X
t=2

f t
k
w(et);

by equations 4.3 and 4.2. Furthermore, by ES,

z1jC1j = z2jC2j:

Hence, z1 =
w(e)+

P
k2C

P
�

t=2
f
t

k
w(et)

2jC1j
and z2 =

w(e)+
P

k2C

P
�

t=2
f
t

k
w(et)

2jC2j
, so de�ning eF by

~f t
k
=

8>>>>>>>>>>><
>>>>>>>>>>>:

f t

k
if t > 1 and k 62 C;

0 if t = 1 and k 62 C;P
k2C

f
t

k

2jC1j
if t > 1 and k 2 C1;P

k2C
f
t

k

2jC2j
if t > 1 and k 2 C2;

1
2jC1j

if t = 1 and k 2 C1;
1

2jC2j
if t = 1 and k 2 C2;

we obtain x = x(e
1
;:::;e

� );
eF . As eF is the sequence of share vectors corresponding to

(e1; : : : ; e� ) in the proportional algorithm applied to M,

((e1; : : : ; e� ); x) 2 PRO(M):

2

Lemma 4.5 If a solution � satis�es E�, MC, FSC, ET, ES and Loc, and a solution

 satis�es all these properties as well as CoCons, then �(M) �  (M) for all mcse
problems M.

Proof : Suppose not. Then there exists an mcse problem M = < N; �; w;E > and

(E ; x) 2 �(M) n  (M), such that < N�;E > has the least number of components of all
problems with the property that �(M) n  (M) 6= ;. Then including (E; x) in  (M)
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yields a solution that still has the properties E�, MC, FSC, ET, ES and Loc, so by

CoCons, (E ; x) 2  (M). 2

This implies that if a solution concept satis�es the other axioms, it satis�es CoCons

if and only if it is the largest (for the inclusion relation) solution satisfying the other

axioms. As a result, the proportional solution is the largest solution satisfying the axioms
E�, MC, FSC, ET, ES, and Loc. The next theorem implies it is also the unique solution

that satis�es all mentioned axioms.

Theorem 4.6 The unique solution of mcse problems that satis�es E�, MC, FSC, ET,

ES, Loc and CoCons is the proportional solution.

Proof : We know that the proportional solution has the properties, and by lemma 4.5,
if there are two solutions having them, they coincide. 2

The decentralized solution has up to now not been characterized axiomatically, but it
can be shown that it satis�es the axioms E�, MC, FSC, ET and Loc. It does not satisfy
ES, and hence also CoCons is not satis�ed.

5 Concluding remarks

In this paper, we presented mcse problems and two algorithms that compute solutions
to these problems. These solutions generate minimum cost spanning extensions as well

as cost allocations and so, solve the operations research problem and cost allocation
problem simultaneously. This was suggested by our analysis of mcst problems, where
Bird's tree allocations appeared to be associated with Prim and Dijkstra's algorithm.
Here, we associate cost allocations with generalizations of the other two well-known
algorithms of Kruskal (1956) and Bor

�

uvka (1926) for computing mcsts.

Second, instead of looking only at the extreme case where no edges are present at
the beginning, and a spanning tree has to be constructed, we also consider problems
where some network is present already, construct minimum cost spanning extensions and
associated cost allocations that lie in the core of the mcse game. This has two advantages.
The mathematical advantage is that a half-solved problem is again in the same class of

problems, the advantage from an applied viewpoint is that not only problems in which
all edges have yet to be constructed are treated, but also problems in which a network

has to be extended can be solved. If the original setup was suggested by (among other
problems) electri�cation of Moravia at the beginning of this century, by now the problem

is more how to extend an already present network.
We characterized the proportional rule axiomatically. This allows one to evaluate the

rule by its properties instead of its de�nition.

The decentralized algorithm is particularly appealing when considering the problems
from a game-theoretic point of view : every connected component constructs links in a

greedy way, and this yields mcses for generic mcse problems. It is still an open problem

to characterize the decentralized value axiomatically.
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