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Abstract

Minimum cost spanning tree (mcst) construction and cost allocation prob-
lems have baen studied extensively in the literature, though usually not together.
Bird (197G) proposes an allocation rule of which Granot and Hubennan (1981)
prove that it lies in the core of the associated mcst game. We show that the prob-
lems of linding an mcst and allocating its cost can be integrated. Furthermore, we
provide an axio~uatic characterization of the set of all Bird tree allocations using
consistency and converse consistency, and give a strategic form game of which the
set of Nash equilibria contains Bird's tree allocations.

1 Introduction

Consicler a group of villages, each of which needs to be connected directly or via other
villagPS to a source. Such a connection needs costly links. Each village could connect
itself directly to the source, but by cooperating costs might be reduced. This cost
minitnizat,ion problPm is an old probletn in OpPrations Research, and Boritvka (1926)
c~;imc up with algorithms to construct a trcti~ counecting every víllage to the source with
nlinilnal total cost. Later, Kraskal (19~i6), Prim (19.57) and Dijkstra ( 19~i9) found similar
alguril.llms. A historic ovc~rvic,w of this minimiration probletn can bc~ found in Grallatn
.cnd Ilc~ll ( I!)S~i).

IThi~ ~wthor is sponsorccl 6y the Founclation for the Promotion of }iesearch in Economic Sciences,

WIIICh 4S part o( Lhe Dutch Organization for Scientific R.esearch (NWO). Email: v.feltkamp(gkub.nl.
''1'his anthor wishcs t.o acknowledge the Canon Focmdation in Europe Visiting Research Fellowship

wllich madc his visil. to (lent.F,K pc~sible.



Ilowevcr, linding a miniinal cosL spauning trc~c~ (mcst) is only part of Lhe problcm :

if the cont of tbis tree has I,o be borne by Lhe villages, theu a cost allucation problem

has to be addressed as welL Claus and Kleitman (1973) introduced this cost allocatiou

problem, whereupon Bird (1976) treated this problem with game-theoretic methods and
for exch mininutm rost spanning tree proposed a cost allocation associated to it. We call
Lhe allocations yielded by this rule Bird's trec allocations. As there can be more than

une mcst for a given problem, Bird's rule can yield more than one allocation. However,

geur.rically, there is only one mcst anci then this rule yields a mtique allocation.

Granot and Hubennan (1981) proved that Bird's tree allocations are extremal points
uf the core of the associated minimum cost spanning tree game. This game is defined

as follows : the players are the villages and the worth of a coalition is the minimal cost

uf conuecting this coalition to the source via links between members of this coalition.

Not being satisfied with only one extremal point of the core, Granot and Huberman

tben provide the weak and strong demand operations, which yiPld more core elements

when applied to Bird's tree allocations. Aarts (1992) found other extreme points oC thc

core in casc Lhe mcst problem has an tncst that is a chain, i.e. a tree with only two

I~~aves. Kuipers (19~):3) investigatrd the core uf information graph games. Thcwe arc

gan,es arising fron, mcst situations in which Lbe costs of links are either one or zero.

The reasou for looking at other core allocations than those yielded by Bird's rule, is

that although core elements are stable agaiust defection by subcoalitions, an extremal

point of the core discriminates against some players. For example, Bird's tree allocations

discritninatc against the players closest to the root. Granot and Hubennan's demand
operations remedy this proUlem by allowing players to demand contributions from players

that `ueed' them.
In this paper we provide two arguments for the defense of Bird's tree allocations : an

axiomatic characterization of the set of Bird's tree allocations, and a non-cooperative
game, iu which Bird's tree allocations correspond to Nash equilibria.

The outline of this paper is as follows.

Section 2 presents minimum cost spauning tree problems and Bird's rule. Instead of

solving the Operations R~search and cost allocation problems consecutively, they can

he more rlosrly integraterl : the cost of a link in au mcst can be allocated at the same

moment. the link is coustructed in the process of forming the tree. Sectiou 3 characterizes

I,he set uf a.llocations yielded hy Bird's rule axiomatically, nsing efficiency, cmisistency

and cunverse cousistency. Section 4 prese~uts a uon-cooperative game, in which a strategy

of a player consists of choosing how much to contribute to the cost of the links. Bird's

tn~e~ allocations will tnrn ont to be Nash equilibria of this game. Section 5 concludes.

Preliminaries and notations
We mfer to any elementary textbook on grapó theory for an understanding of graph

theory, but recall some definitions to show the notational conventions. A graph G V, E 7

cousists of a set V of vertices and a set E of edges. An edge e incident with two vertices

i aud j is identified with {i, j}3. For a graph c V, E~ and a set W C V,

E(W):-{eEE~eCW}

'prcans~ wr do not consiJer rnnltigraphs : two vertices are connected by at rnost one edge.



is the set of edges linking two vertices iu W. For a set E' C E,

V(E') :- {v E V ~ there exists an edge e E E' with v E e}

ïs tbe set of vertices incident with E'.
The complete graph on a vertex set V is the graph Ky -G V, Ey ~, where

Ey :- {{v,w} ~ v,w E V and v~ w}.

A path from i to j in a graph G V, E 1 is a sequence ( i - io, it, ..., ik - j) of vertices
such that. for all I G k, the edge {ir-t,i~} lies in E. A cycle is a path of which the
begiu-point coincides with the end-poiut. Two vertices i, j E V are counected in a graph
G V, E) if there is a path from i to j in G V, E~. A subset W of V is contzected in
G V, E 1 if every two vertices i, j E W are connected in the subgraph G W, E(W ) 1. A
conuectcd set W is a component of the graph G V, E 1 if no superset of W is comiected.
A connected grnph is a graph G V, E~ with V connected in G V, E). A tree is a
connectecl graph that contains no cycles. A leaf of a tree is a vertex that is incident to
unly one edge of the tree.

Thr~ cardinality of a set .5' will be denotc~d by ~5~.

With n~any ecunomic situations in which COSts have to be divided one can associate
a cn.~a garuc (N,c) cunsisting of a finitc set IV u( playars, and a r-h.arncfrristic fvazr~tion
r:'lN -a K., witó c((~) - 0. Ilem r(.S) repmsents the miuimal cost fur coalition .S' if it
secedes, i.e. if people of S cooperate and can not count upon help from people outside S.

The economic situations in the sequel involve a set N of users of a source ~. For a
roalition S C N, we denote S U{~} by S'. Furthermore, for a vector x E RN and a
player i E N, we denote x-' the restriction of x to N`{i}.

The corc of a cost game (N,c), is defined by

('ore(c) -{x E R.N ~ ~ x; - c(N) and ~x; G c(5') for all .S C N}.
iEN iES -

2 Mcst problems and Bird's tree allocation rule

Formally, a mininznm cost spanninq tree (mcst) prnblem G N, s, w~ consists of a finite
group N of agents, each of whotn wants to be connected to a common source, denoted
by ~. Tho nun-nefiative cust uf cunstrucl.ing a link {i, j } bc~twM~n thc vert.ices i and j in
N' - N U {s } is denoted by ro(i, j). liecause of Lhesc costs, agents have an incentive tu
cuoperatP, and to construct a minimal cost graph that connects them all to the source.
If a cycle appears in such a minimum cost spanning grnph, at least one edge in this

cycle can be elitninated, to yield another nunimum cost spanning graph, with less cycles.

Hence, there are minimum cost spanning graphs that contain no cycles at all, i.e. that
are tre~es. This explains the name of the problem.

Prim (1~57) and Dijkstra ( 1959) proposed the following algorithm to find a minimum

cost spanning tree given an mcst problem.
Algorithm 2.1 (Prim and Dijkstra)

iuput : an mcst problem 7- C N, ~, w 1
ontput : the edge set T of a minimum cost spanning tree



I. Choose a vertex v E N' as root.

'l. Init.ialize T - 0.

:3. Fiud a miuimal cost edge e E E~,. `T incident to {v} U N'(T) such that joining e
to T does not introduce a cycle.

4. .loin e to T.

~i. If uot all vertices arP connected to the root in the graph G N`,T ~, go back to
stage :3.

Prim and Dijkstra then prove that any tree resulting from the algorithm is an mcst.
Note that by varying between the possible edges in step 3, this algorithm can construct
all miniun~m cost spanning trees of this mcst problem 7.

A problem related to such a minimization problem is how to allocate the cost of
the edges of a miuimum cost spanning tree among the agents (users of the source)
in a reasonable way. Bird (1976) associated the following transferable utility mcst-

game (N,c7) to an mcst problem T. The players are the agents and the worth cT (S)
of a coalition ,4 is the minimal cost of a tree on S' :- S U{~}. In fortnula,

c7(S) - min{~ w(e) ~ T C ES and G S',T 1 is a tree}
eET

for all .S' C N. Bird also proposed a cost allocation rule for the mcst problem, which
hr calls the trre al(ocation rule, because it associates a cost allocation to every mcst of
the~ mcst problem. Granot and Huberman (1981) proved that Bird's tree allocation rule
yields extreme points of the core of the mcst game. Given an mcst problem G N, ~, w~
and a mcst G N`,T ~ for the grand coalition, Bird's tree allocation QT is constructed
by assigning to a player i E N the cost of the first edge on the unique path in the
trPe G N',T ~ from player i to the source ~. In fact, this allocation is intimately linked
with the Prim-Dijkstra algorithm : the tree G N',T ~ and the allocation QT can be
constructed together by choosing the source as root and allocating the cost of the edge
adde~d at a certain stage to the person that this edge newly connects to the the source.
More formally, thP algorithm is the following.
Algorithm 2.2 (Bird's rule integrated into Prim and Dijkstra's algorithm)

iuyut : an mcst problem G N, ~, w~
output : au edge set T of an mcst and an allocation x (Bird's tree allocation (~T)

L Choose the source ~ as root.

'l. Initialize T - 0.

:3. Find a miuimal cost Pdge e-{i, j} E EN. `T incident to {~} U N'(T) such that
joining e to T does not introduce a cycle.



4. Oue of i and j, say j, was previously connected to the source ancl the other vertex,
i, is a player that was not yet connected to the source. Assign the cost x; :- w(e)
to agrnt i.

5. Join e to T.

f. If not all vertices are connected to the root in the graph G N',T 1, go back to
stage 3.

As the sct of all trees obtained by Prim and Dijkstra's algorithm is independent of the
ruot that is chosen, this algorithm yields the same trees as Prim and Dijkstra's algorithm,
ancl for each tree C N',T 1, it yields an allocation that is Bird's tree allocation QT
associated to this tree. This is easy to see : in step 4, the edge e is precisely the first
edge on the unique path from agent i to the source in the tree that will be constructed.
If the nu~st problem contains two or more edges with the same weight, there might be
nwre thau one mcst, and for a particular mcst G N',T ,, it can happen that there
is more than one order in which PrinrDijkstra's algorithm can choose the edges in T.
Obviously, thr order does not change the edge that a player has to pay according to
Bird's tree allocation rule, so Bird's tree allocation (jT is independent of the order in
wliich the edges of the trec C N',T 1 are chosen. It does, however, depend on which
trr~e is constructed. See example 2.3.

S10` ,~10

Two mcsts

l~igurr I: Cdges that arc not indicated cost ~100.

Example 2.3 lu the problem on the left of figure 1, whether Prim-Dijkstra's algorithm
chooses Lhe links in the uuique mcst in the order {~, 1}, {~,'l}, {2,3} or {~,`l}, {~, I},

{'1,:3}, tho link {~, 1} is always paid by player 1 and the link {~,2} is always paid by

player 2.
[n the problem on the right of figure 1, only one of the two dashed links will be

constructed. In case {~, 1} is constructed, Bird's tree allocation is (10,5,6) and if {~,2}
is constructed, Bird's tree allocation is (6,10, 5).
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3 An axiomatic characterization of Bird's tree al-
location rule

lu this section, we characterize the set of mc.5t and their associate,d Bird allocations
axiomatically, using efficiency, consistency and converse consistency.

A solulion of mcst problems is a function ~ assigning to every mcst problem T-
G N, ~, w~, a set

,
t(~(T) C{((et,...,e'),x) ~ G N`,{e',...,eT} ~ is connected and ~x; 1~w(et)}.

iEN - t-1

Wo mt-nt.i~m a few properties of solutious of mcst problems.

Definition 3.1

NE A solutiou ~~ is called raon-empty if

~(T) ~ g for all mcst problems 7.

Eff zG is c,(J~icient if for all mcst problems T, all ((e~,. .., e'), x) E~(T) are e,~cient, that
is, for all ((et, . , er), x) E~(T ), G N`, {er, . .., e'} 1 is a minimal cost spanning

tree and

~ x; - ~ w(et).
iEN t-1

The two properties of consistency and converse consistency use reduced mcst prob-

li~ms. Here, a reduced mcst problem is an mcst problem where some players have been
climinated. The idea is that solving reduced problems is easier than solving the original
prublem, and that the solution of the original problem should be related to the solution of

the reduced problems. We only ask for this relation if one player that is a leaf is deleted,
however. The idea is that a leaf is not needed by any other player to get connected to
the source, so if a leaf player is missing, this should not affect the other players.

Definition 3.2 Given an mcst problem T- G N, ~, w~ and a player i E N, define the

mduced mcst problPm
T-' :-G N ` {i},r,w ` ~,

where io-` is w restricted to EN.`{i}.

Note that the reduced problem does not depend on any fixed solution. Note also that

it is indeed an mcst problem. Using reduced mcst problems, we can define consistency

aud converse consistency as follows.



Definition 3.3

Cons A sulution y'~ of mcst problems ïs consistenl if for every mcst problem T, for
evcry ((e',...,e'),x) E tli(T) and for every player i that is a leaf in the graph
G N',{e', ..,e'} 1,

((e', ..,e')-',x-') E ~G(T-`),

whc~re (e', ... , e')-' is obtained from (e', ... , e') by deleting the unique edge in-
cident to i and x-` is the vector obtained from x by deleting the coordinate of
player i.

CoCons A solution ~ of mcst problems is converse consi.ctent if for any mcst problem
T and for any ((e', .. ., e'), x) efficient in T, the following is satisfied : if

((e', ..,e')-',x-`) E ~(T-`)

for some player i that is a leaf of G N', {e',...,e'} ~, then

((e',...,eT)~x} E ~(T).

The couverse consistency property is motivated by the idea that if a possible efficient
sulutiou is excluded, the `reduced' solution should also be excluded as solution in a
recluced problem where a leaf has been deleted. It ensures that solutions that satisfy it
are as large as possible without violating efficiency and consistency.

Definition 3.4 The Bird solution of an mcst problem T is the set

(3(T) :- {((e',...,e'),(~T(T)) ~ T-{e',...,e'} and G N',T ~ is an mcst of T}

of sequences of edges of minimum cost spanning trees and the corresponding Bird tree
allocations.

Proposition 3.5 The Bird solution satisfies NE, Eff, Cons and CoCons.

Proof : Efficiency was proven by Bird and non-emptiness is evident. In order to prove
('ons, assiune ( (e', ..., e' ), ~3T ) E p(T ) and let player i be a leaf in the tree G N', T~,
wherP T-{e~,...,c'}. Define e to be the first edge on the unique path in G N',T ~
from i. to the source. Then (e', ... , e')-' is obtained from (e', ..., e') by deleting the
edge e and is a sequence obtained by applying the Prim-Dijkstra algorithm to the reduced
mcst problem 7-'. Hence x-' -~T`{`}, and

((e~,...,e')-',x-') E Q(T-').

ln ordPr to prove that the Bird solution satisfies CoCons, assume that ((el,...,e'),x)
is efficient iu an mcst problem T and assume that player i is a leaf of G N', {e', ..., e'} ~

such that
((e',...,e')-',x-') E Q(T-'). (3.1)



H

UE~fiue e; to be the wiique edge incident to i in {e',...,e'}. Then {e',...,e'} -
{E'', .,F'}-` U{e;} and G N' ` {i},{e', .,e'}-' 1 is an mcst for the reduced mcst
problem T-'. Hence efficiency of ((e',...,e'),x) and equation 3.1 imply

~ xk - ~ w(e) - ~ w(e) f w(e~) - ~ xk~ f w(ei),
kEN eE{r~, ,e'} eE{e~,...,e'}-~ kEN`(i}

which implies that x; - tu(e;). So ((e',...,e'),x) E ~i(T). O

Lemma 3.6 If a solution ~ satisfies Eff and Cons and a solution tli satisfies NE, Eff and
CuCons, then ~(T ) C~i(T ) for all mcst problems T.

Proof : We proceed by induction on the cardinality of N. Let ~N~ - 1 and denote by e
the edge betweeu the tmique player and the source. By efficiency of both solutions and
non-emptiness of ~, we obtain ~(T) C {((e),w(e))} - tli(T). Take an mcst problem T
with k~ 1 players, and suppose that for all mcst problems T' with less than k players,
~(T') C,li(T'). Take ( (e', ..., e'), x) E~(T) and chóoee a leaf i~~ of the tree T induced
by (e', ... , e'). Then by consistency of ~, ( (e', .. , e')-', x-`) E ~(T-`) C t~(T-'). Now
((e.', ... , e'), x) is efficient, hence (( e', ... , e'), x) E 7G(T) by converse consistency of t~i.

Theorem 3.7 The imique solution that satisfies NE, Eff, Cons, and CoCons is the Bird
sohition.

Proof : The Bird solution has the properties, and if another solution has the properties,
by lemma 3.6, it coincides with the Bird solution. O

The properties used to characterize the Bird solution are logically independent. We
show this by giving examples of solutions that satisfy three of the four properties.

Example 3.8 If we leave out the non-emptiness property, the empty solution that as-
signs the empty set to every mcst problem satisfies Eff, Cons and CoCons.

Example 3.9 If we leave out the efficiency property, the solution that assigns
((e)~EeN„ (n,... , n)) to every mcst problem, satisfies the other three properties. Here
(e)FEgN, denotes the sequence of all edges of the complete graph on N' ordered by non-
decreasing magnitude, and n- qum~EEN,w(e). Notice that there are no leaves in the
complete graph, except if there is only one player, so the consistency property is satisfied
vacuonsly.

Example 3.10 If we IeavP out consistency, the solution that assigns to an mcst prob-
h~ni G N, ~, w, the set of all efficient outcotnes

T

{((e',...,e'),x) ~ G N', {e',...,e'} ~ is an mcst, x E RN and x(N) -~w(e')}
e-t

satisfies thP three other properties.
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For thr last example, we assume there is a total ordering G on the set of all possible
players. This is a reasonable assumption : usually, names of players are finite strings
in somP finite alphabet, which can be alphabetically ordered. Define the lexicographical
order on elements of a solution to an mcst problem G N,a,w 1 by ((et,...,e'),x) ~L
((è~, ..., è'), y) if there exists a k E N such that x; - y; for i G k and xk G yk-

Example 3.11 If we leave out converse consistency, the solution that assigns to every
mcsL problem the set of lexicographically smallest elements of the Bird solution satisfies
the three other properties, but does not coincide with the Bird solution on all mcst
problems, so it does not satisfy converse consistency.

4 Sustaining the Bird tree allocations by Nash
equilibria

lu the previous srctions we studied mcst problems by means of cooperative games. In
this sectiou, wP model the problems by strategic games, in which an action of a player
cuusists of a specification of the edges to which this player will contribute, and which
amounts he will contribute.

Definition 4.1 'Co an minimum cost spanuing tree proUlem G N, ~, w 1, we associate
the strategic game G N,(A');EN,(u;)iEN ~ in normal form with player set N, and in
which an action a' -(n~)jEN'`{;} E A' - R~~~{~} of a player i specifies for each other
vertex j(j can be a player or the source), the non-negative amount a~ that player i is
williug to contribute to the cost of the edge {i, j}. The utility that player i derives from
a strategy profile ct -(n');EN is detPrmined in the following way. We assume that players
dislike n~aking coutributions, but they absolutely have to be connected to the source.
Su the utility function is linear in the coutributions, and a big penalty is subtracted if
the player is not connected to the source iu the graph resulting from the contributions
uf all players. More precisely, for a strategy profile n, the set Ca of edges that have been
cumplPtely paid for and that will he constructed is defined as

C„ :- {{i, j} E EN. ~ n~ f a; ~ w(e)}

and the utility ot player i is defined as

- ~ n~ if i is connected to the source in G N',C„ ~

u;(at, .. ,a") ,- jEM`{i}
;- ~ nj - P otherwise

jEN'`{i}

where P is a large number (P ~ ~ w(e)).
eEBN.

We proceed to Pstablish a relationship between the Bird solution presented in section 2
and Nash equilibria of the above strategic mcst game.
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Theorem 4.2 Each elemenL ((e~, ..., e'), x) of the Bird solution of an mcst problem
corresponds to a Nash equilibrium of the associated strategic mcst game, in whicó the
strategy of a player i is to construct the first edge on the unique path from i to the
source in the tree G N',{et, . ,e'} 1 and his payoff equals -x;.

Proof : Let T- G N, ~, w ~ be an mcst problem and let ((et ,..., e'), x) be an element
of the Bird solution J~(T). The corresponding strategy a' for a player i is to contribute
only to the first edge e; that lics on the unique path from i to the source in the tree
G N`, {et,...,e'} 1 and to pay the cost w(e;) of this edge completely. [f every player
plays this strategy, the resulting set C„ of constructed edges is precisely {e', ..., e'},
which implirs that all players are connected to the source. So the payoff to player i
equals -w(e;). Heuce u;(a) - -w(e;) - -x;.

To prove that a is a Nash equilibrium, suppose that a player i deviates from a. It is
clear that contributing more to the edge e; does not improve i's payoff. If i contributes
Icss than w(e;) to the edge e;, then e; is not paid completely, so it will not be constructed.
Now player i wants to avoid the penalty, which is larger than w(e;), so í has to pay at
h~ast one other edge é that connects the component of i in the graph G N`,Ca `{e;} ~
to the component of the source. Because G N", {et ,..., e'} ~ is an mcst, such an edge
c' has to be at least as costly as the edge e;. Hence i is not better off. O

lf the costs of all edges are positive, it can be proved that in all Nash equilibria of the
st.rategic game a spanning tree is formed, although it does not have to be a mcst.

Theorem 4.3 If in an mcst problem the costs of all edges are positive, each Nash
equilibrium n of the strategic mcst game specifies a spanning tree G N", C, 1 for the
nicst proUlem, and the payoff vector is -Q~'. Here, for any spanning tree G N',T ~ we
agaiu denote (iT the allocation assigning to every player the cost of the first edge on the
uuique path frotn the player to the source in this tree.

Proof : Let G N, ~, w 1 be an mcst problem in which the costs of all edges is
positive and let G N, (A');EN, ( u:)iEN ~ be the associated strategic mcst game. Let
a-(a',...,a") bP a Nash eqnilibrium and consider the set Ca of edges that have been
completely paid. If a player i is not connected to the source in the graph G N',Ca ~,
then by dPViatiug and using the strategy á in which he pays precisely the link {i, v~}, he
can improve his payoff. So in a Nas6 equilibrium, every player is connected to the root.
~nrthermore, if a cycle were present in the graph G N`,Ca ~, there is a player i that
coutrilwLos a positive amount to an edge of this cycle. Then i can improve 6is payoff by
uut contributiug to this edge. Hence G N', Ca ~ is a tree.

It is clear that no edge of the constructed tree will be `overpaid' and that no other
rdge will be contributed to. Furthermore, every player i contributes only to edges that
lie on t6P path in the tree from i to the sourcP. If this were not true, some player could
reduce his contribution to an edge that does not lie on the path from himself to the
source, without incurring the penalty. Now there is only one edge in the path from i to

the source in the tre~ that i can contribute to, and that is the edge e- {i, j} in the tree,

that is the first ecíge on the unique path in the tree from i to the source. By an induction
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argumeut one sees that no other player contributes anything to this edge, which implies
that i pays w(e) alone. So a~ - w(e) and a'k - 0 for all other k E N', and the payoff is
u,~a) - -w(e) - ~c". L'

Nut all Nash equilibria correspond to mcsts, as is shown by the next exantple.

rigure 'l: A pruhlcm with a Nash equilibrium that does not correspond to an mcst.

Example 4.4 Consider the problem drawn in figure `l. The strategy pair where player 1
pays the e(Ige {1,2} and player 2 pays {2,~} is a Nash equilibrium in the associated
strategic game, but the unique mcst uses the edge {1,~} instead of {2,~}.

We call a Nash equilibrium total payoff maximizing if the sum of the payoffs to the
players in this equilibrium is maximal among all Nash equilibria.

Theorem 4.5 In an mcst problern with positive weights, the total payoff maximizing
Nash ecp~ilibria correspond to mcsts.

Proof : We know that a Nash equilibrium corresponds to a tree, and that the payoffs of
tlir players correspond to costs of edges in the tree. If the total of the payoffs is maximal,
the cost of the tree is minimal, hence the tree is a mcst. O

Remark Total payoff maximizing Nash equilibria are strong Nash equilibria ( private
cummuuication by Cert-Jan Otten). In a strong equilibrium, deviations by coalitions
uf players clo nut. st,rictly improve the payoffs of all players in the coalition. Hence,
theurem -1.1 can be replaced by a stronger theurem, viz.,

Theorem 4.6 Each element (( e~, ..., eT ) , x) of the Bird solution of an mcst problem
curresponcls to a strong Nash equilibrium of the associated strategic mcst game, in which
the strategy of a player i is to construct the first edge on the unique path from i to the
suurce iu the tree C N',{e~, . ,er} ~ and his payoff equals -x;.

However, the non-total-payoff-maximizing equilibrium in example 4.4 is a strong Nash
equilibrimn. Hence, the set of all strong equilibria does not coincide with the set of all
tutal payoff maximizing equilibria in all strategic mcst games.

5 Conclusion
In this paper, we have reconsidered Bird's tree allocations for mcst problems, and have
til.udied Lheni from t.wo points of view. First we gave an axiomatic characterization which
porn~its us to determine whether the allocation rule is applicable. Second we introducecí
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a uuu-c~,upera,tive game, of which the total payoff maximizing Na`sh equilibria coincide
with l3ircl's tree allocations.

Instead uf nsing Bird's trrw alloration rule, one could use elements of the irrecluciblP
r~,re of a mcst problcm tu evaluate it. 'f'he irreducible core was also introduced hy
liird (19ï1i) aud stuclicd by Cranot and Hubcrman (1982) and Aarts and Driessen (199:3).
We axiun,atically characterize the irreducil,le core of a generalization of mcst problems

iu Feltkamp, Muto and Tijs (1994a), and also prove that it can be obtained as the set of

all allocations that are associated to Kruskal's (]956) algorithm to construct minimum

cost spanning trees.
Knowing that there are several algorithms to construct minimum cost spanning trees,

oue can consider associating other allocations to them. This is done in Feltkamp, Tijs
aud Muto (1994a) and (1994h) for Kruskal's algorithm, and an older algorithm described
iu Borirvka (1926).
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