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Role of three-body interactions in formation of bulk viscosity

in liquid argon
S. V. Lishchuk

Department of Mathematics, University of Leicester, Leicester LE1 7RH, United Kingdom and School of Food
Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom

(Received 3 January 2012; accepted 5 April 2012; published online 23 April 2012)

With the aim of locating the origin of discrepancy between experimental and computer simulation
results on bulk viscosity of liquid argon, a molecular dynamic simulation of argon interacting via
ab initio pair potential and triple-dipole three-body potential has been undertaken. Bulk viscosity,
obtained using Green-Kubo formula, is different from the values obtained from modeling argon
using Lennard-Jones potential, the former being closer to the experimental data. The conclusion is
made that many-body inter-atomic interaction plays a significant role in formation of bulk viscosity.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704930]

. INTRODUCTION

Argon above its melting temperature is a typical sim-
ple fluid. Consisting of spherical atoms that interact via
short-range repulsion and long-range attraction and are heavy
enough for the quantum effects to be small, fluid argon and
heavier noble gases are an excellent choice of a real system to
be used for testing various approaches in classical theory of
fluids.

An inter-particle interaction in argon is commonly repre-
sented by a well-known 12-6 Lennard-Jones pair potential,'

vLy(r) = deyy [(%)12 - (%)6] . (1)

The two parameters, oy and ey, are usually determined by
fitting thermodynamic properties, derived from the potential
(Eqg. (1)) by theoretical or computational methods, to corre-
sponding experimental data.

It is known that Lennard-Jones potential is only an ap-
proximation to real interaction in argon. Several experimen-
tal results obtained for argon at large pressures are better ex-
plained if a larger steepness, compared to Lennard-Jones, of
argon—argon interaction potential at small inter-atomic sep-
aration distances is taken into account.>® Accurate argon—
argon interatomic potentials have been calculated by direct
ab initio quantum chemical calculations*® or obtained by
inversion of experimental data.” Moreover, many-body dis-
persion, exchange and induced polarization contributions to
inter-atomic interactions are not small and noticeably influ-
ence thermodynamic properties of argon.®° The most widely
used of these contributions is triple-dipole dispersion inter-
action, derived by Axilrod and Teller'®!" and Muto,'?> and
account of this contribution in addition to ab initio pair po-
tential is sufficient to describe thermodynamic properties of
argon with good accuracy.!3-!7

By virtue of Henderson theorem,'® " which states that,
for fluids with only pairwise interactions, and under given
conditions of temperature and density, the pair potential
which gives rise to a given radial distribution function g(r)
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is unique up to a constant, the thermodynamic properties of
the system with many-body interactions can be described by
a model system with an appropriate effective pair potential.
Generally, the effective potential depends on the thermody-
namic state of the system and thermodynamic property to be
described.?*?> Van der Hoef and Madden 2! have demon-
strated that the account of triple-dipole and dipole-dipole-
quadrupole dispersion interactions moves the effective poten-
tial of argon towards Lennard-Jones form (1). Moreover, the
possibility of consistent description of many thermodynamic
properties of argon, using Lennard-Jones potential in a wide
domain of thermodynamic states,>*> suggests that the state
dependence of the effective potential is weak.

There is no analogous reason for kinetic properties of
a system with many-body interactions to be equivalent to
those of a system with a corresponding effective pair poten-
tial. Nevertheless, experimental data on self-diffusion, shear
viscosity, and thermal conductivity coefficients of argon have
been shown to be accurately described by Lennard-Jones
model with the parameters obtained by fitting thermodynamic
data.?>?’

Bulk viscosity is a noticeable exception. Bulk viscosity of
argon has been measured experimentally,”®> and its behav-
ior can be qualitatively described by the results of a molecular
dynamics simulation of a Lennard-Jones system.’® However,
when results of simulations with Lennard-Jones potential are
rescaled in an attempt to describe experimental data liquid
argon, bulk viscosity, contrary to other kinetic properties, ap-
pears strongly underestimated (e.g., up to 50% in Ref. [27)].

In view of the above, I propose that the source of this dis-
crepancy may lie in neglect of many-body interactions. Pre-
vious molecular dynamics simulations of systems consisting
of 108 particles interacting via ab initio pair potential and
Axilrod-Teller-Muto (ATM) interaction indicated that a triple-
dipole interaction does not affect the bulk viscosity of lig-
uid xenon near its triple point>’ and dense gaseous krypton.*®
However, the error in the values of bulk viscosity obtained
from molecular dynamics simulation of the systems with such
a small number of particles can be quite large. For example,
the values of the reduced bulk viscosity of the Lennard-Jones

© 2012 American Institute of Physics
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systems consisting of 128 and 256 particles at the reduced
temperature 7% = 0.722 and the reduced density p* = 0.8442,
reported in Refs. 36 and 39-41, range from 0.89 to 1.47, with
the ratio of the latter to the former of 1.65.

This paper presents the results of more accurate molecu-
lar dynamics simulations of a liquid consisting of 1372 argon
atoms with ab initio+ATM interaction, which demonstrate
that bulk viscosity, determined from Green-Kubo formulas,
significantly changes with the account of three-body interac-
tion, moving results towards experimental data.

Il. INTERACTION

Nasrabad et al.'® undertook a Monte Carlo simulation
of argon using combination of ab initio pair interaction* and
ATM triple-dipole dispersion interaction'’ to test their abil-
ity to predict vapor-liquid equilibrium. Although more accu-
rate ab initio pair potentials for argon have become available
recently,>® and other many-body contributions to inter-atom
interaction can be calculated,® we use the same interaction as
Nasrabad et al. because, being able to predict accurately the
phase diagram of argon,'¢ it is computationally more efficient.

Specifically, the ab initio pair interaction potential used
in the present work is described by a function'®

5
Con
un(r) = A £ 3 £, ) r,fn , )
n=3
where
2n
RN (20
fulrb) =1 =€y = 3)
k=0 ’

and numerical values of the parameters A, «, 8, b, and Cy,
are given in Ref. [16]. The ATM triple-dipole interaction has
form!?

1 4+ 3cosacos B cosy

uz(riz, 13, r31) = v 33 , 4)
F2r3731

where the rj, are the lengths of the sides, «, B, and y are
the angles of the triangle formed by three argon atoms, and
v =17.32 x 107'% J m® for argon.'> 14

For simulations of argon using Lennard-Jones potential
(1) the values o1y = 3.3952 A and €;; = 116.79 K are used.?’
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FIG. 1. Bulk viscosity of liquid argon at 7 = (90 — 140) K. Error bars con-
nected with solid and dashed lines correspond to the simulation results with
ab initio + ATM and Lennard-Jones interaction, respectively. Experimental
points are taken from Refs. [33] (circles, pressure 40 atm) and [29] (square
with error bar, pressure 40 kg/cm?).

lll. SIMULATION

Meier et al’® undertook a systematic study of the in-
fluence of the number of particles and the cutoff radius for
pair interaction on the bulk viscosity of Lennard-Jones sys-
tem. In view of their results, simulations were performed
in a cubic box containing N = 1372 particles, and the cut-
off radius for pair interactions was set to 5oj. Three-body
interactions were cut off when the distance between any
pair of the atoms in the triplet exceeded one quarter of the
simulation box length (around 3oy for the densities stud-
ied in this work). Usual periodic boundary conditions and
minimum image convention were applied. The simulations
were started with the particles in a face-centered-cubic lat-
tice, with randomly assigned velocities. Forces arising from
three-body interactions were calculated using formulas given
by Allen and Tildesley,*” and an expression for forces due
to ab initio pair interaction was obtained by applying gradi-
ent operator to Eq. (2). Newton’s equations of motion were
solved using velocity-Verlet algorithm with the time step
At - m/(fu = 0.003.

The runs were made at the experimental densities at
various temperatures along the 40 atm isochore, taken from
Ref. [33]. Every simulation was initiated in the NVT ensemble
and run for at least 2 x 10° time steps to attain thermody-
namic equilibrium. After equilibration the thermostat was

TABLE I. Bulk and shear viscosities of argon obtained from molecular dynamics simulations using Lennard-Jones (LJ) and ab initio pair + Axilrod-Teller-
Muto three-body (AI+ATM) interaction, and corresponding experimental data.’?3° Error in the simulation data is calculated using Eq. (7).

Bulk viscosity ¢, mps

Shear viscosity 7, mps

T.,K p, glem? L AI4+ATM Ref. [33] L AI4+ATM Ref. [33] Ref. [50]
90 1.390 1.10 £ 0.04 1.54 £0.10 1.82 231 £0.04 2.44 £0.07 2.33 2.57
100 1.327 1.03 £0.03 1.48 £0.09 1.57 1.78 £0.03 1.87 £0.06 1.86 1.92
110 1.258 1.04 £0.02 1.33 £0.05 1.39 1.38 £0.02 1.39 £0.03 1.51 1.48
120 1.182 0.99 £ 0.03 1.35 £0.05 1.51 1.09 £0.02 1.12 £0.02 1.19 1.15
130 1.092 1.04 £0.04 1.32 £0.10 1.71 0.86 £ 0.02 0.87 £0.03 0.88 0.89
135 1.037 1.03 £0.04 1.21 £0.10 1.93 0.73 £0.02 0.70 £0.03 0.760 0.77
140 0.968 1.00 £ 0.05 1.12 £0.10 2.53 0.65 £+ 0.02 0.65 £ 0.03 0.642 0.65
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turned off and the NVE ensemble was invoked to calculate

bulk and shear viscosities. The length of the production

period was 4 x 10° time steps for the system interacting

via Lennard-Jones potential, and between 10° and 3 x 10°

time steps for the system with ab initio + ATM interaction,
depending on the state point.

Bulk viscosity, ¢, and shear viscosity, n, were calculated
using Green-Kubo formulas*
(o]

=T

{(8p(1)dp(10)) dr, &)

o]

= ) (0ap(t)owp(t0))dt, (6)

where V is volume, kg is Boltzmann constant, T is tem-
perature, ¢ is time, dp = p — (p) is the deviation of the
instantaneous pressure p from its average value (p), oqg
is an off-diagonal element of the stress tensor, the angular
brackets denote equilibrium ensemble averages over short
trajectory sections of the phase-space trajectory of the system
with multiple (every time step) time origins fy. The stress
tensor was calculated using formulas given by Lee and
Cummings.** The integration in Eqs. (5) and (6) was carried
out up to v, = L/c, where L is simulation box length and c is
sound velocity taken from Ref. [33]. Depending on the state
point, the value of 7, was between 4.80 and 11.25 ps. The
statistical error in time correlation functions was estimated
using formula given by Frenkel and Smit,*

n

2‘L'X
o (XOXO) ~  [—(X*(0)), o
where f., is the length of the simulation, and the correlation
time Ty was approximated as the time during which time
correlation function decays e &~ 2.718 times.

IV. RESULTS

Figure 1 and Table I present simulation results
for the bulk viscosity obtained using ab initio + ATM
(Egs. (2)and (4)) and Lennard-Jones (Eq. (1)) interaction,
respectively. Bulk viscosity, determined from Green-Kubo

1

0.8

0.6 [ |

04 r |

C(t) /C(0)

02 N\

t, ps

FIG. 2. Time-correlation functions C(#) used for calculation of bulk viscosity
at density 1.258 g/cm?. Solid and dashed lines correspond to the simulation
results with ab initio + ATM and Lennard-Jones interaction, respectively.
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FIG. 3. Shear viscosity of liquid argon at 7 = (90 — 140) K. Error bars
connected with solid and dashed lines correspond to the simulation results
with ab initio + ATM and Lennard-Jones interaction, respectively. Dotted
line corresponds to the interpolation data for pressure 40 atm taken from
Ref. [50].

formulas, changes with the account of three-body interaction,
moving towards experimental data. However, this change is
not sufficient to obtain numerical agreement with experiment,
especially at lower densities. Typical behavior of time
correlation functions C(¢) = (6p(#)6p(0)) is shown in Fig. 2.

Fernandez et al.”’ demonstrated that, contrary to bulk
viscosity, the values of shear viscosity of argon obtained
from molecular dynamics simulation of a Lennard-Jones sys-
tem agree with experimental data. Lee and Cummings** and
Marcelli et al.*® found that the influence of triple-dipole inter-
action on shear viscosity of argon is small. The results of the
present simulation, shown in Fig. 3 and Table I, agree with
these findings.

V. CONCLUSION

The message of this paper is that many-body interac-
tions play a more substantial role in determining the value
of the bulk viscosity than other transport coefficients. The
present results from the molecular dynamic simulation of liq-
uid argon demonstrate that even account of a single many-
body contribution, ATM triple-dipole interaction, shifts the
values of the bulk viscosity of argon towards experimental
data. Larger sensitivity of the bulk viscosity to many-body
interaction, compared to other transport coefficients, can be
intuitively explained in the case of gaseous state. Bulk viscos-
ity of a non-relativistic monoatomic gas calculated from the
Boltzmann equation, which takes into account only pair col-
lisions of atoms, appears to be zero, in contrast to heat con-
ductivity and shear viscosity which have non-zero values in
the same approximation.*’ A non-zero value of bulk viscosity
appears in the approximations corresponding to higher order
terms in the virial expansion,*®#° which correspond to the ex-
plicit account of at least three-atom collisions which, in turn,
are sensitive to three-body inter-atomic interaction.
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