research

Nuclear deformation and neutrinoless double-β\beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd nuclei in mass mechanism

Abstract

The (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+0+0^{+}\to 0^{+} transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the ββ\beta ^{-}\beta ^{-} decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced B(E2B(E2:0+2+)0^{+}\to 2^{+}) transition probabilities, quadrupole moments Q(2+)Q(2^{+}), gyromagnetic factors g(2+)g(2^{+}) as well as half-lives T1/22νT_{1/2}^{2\nu} for the 0+0+0^{+}\to 0^{+} transition and the available experimental data. In the present work, we study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay for the 0+0+0^{+}\to 0^{+} transition in the mass mechanism and extract limits on effective mass of light as well as heavy neutrinos from the observed half-lives T1/20ν(0+0+)T_{1/2}^{0\nu}(0^{+}\to 0^{+}) using nuclear transition matrix elements calculated with the same set of wave functions. Further, the effect of deformation on the nuclear transition matrix elements required to study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay in the mass mechanism is investigated. It is noticed that the deformation effect on nuclear transition matrix elements is of approximately same magnitude in (ββ)2ν(\beta ^{-}\beta ^{-})_{2\nu} and (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay.Comment: 15 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020
    Last time updated on 27/12/2021