304 research outputs found

    Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration

    Get PDF
    Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Cα mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal–regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on β1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2–β1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with β1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with β1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2–integrin localization may determine the specific downstream effects of integrin signaling

    Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR

    Get PDF
    BACKGROUND: The 21-kDa Vaccinia virus VH1-related (VHR) dual-specific protein phosphatase (encoded by the DUSP3 gene) plays a critical role in cell cycle progression and is itself regulated during the cell cycle. We have previously demonstrated using RNA interference that cells lacking VHR arrest in the G1 and G2 phases of the cell cycle and show signs of beginning of cell senescence. METHODS: In this report, we evaluated successfully the expression levels of VHR protein in 62 hysterectomy or conization specimens showing the various (pre) neoplastic cervical epithelial lesions and 35 additional cases of hysterectomy performed for non-cervical pathologies, from patients under 50 years of age. We used a tissue microarray and IHC technique to evaluate the expression of the VHR phosphatase. Immunofluorescence staining under confocal microscopy, Western blotting and RT-PCR methods were used to investigate the localization and expression levels of VHR. RESULTS: We report that VHR is upregulated in (pre) neoplastic lesions (squamous intraepithelial lesions; SILs) of the uterine cervix mainly in high grade SIL (H-SIL) compared to normal exocervix. In the invasive cancer, VHR is also highly expressed with nuclear localization in the majority of cells compared to normal tissue where VHR is always in the cytoplasm. We also report that this phosphatase is highly expressed in several cervix cancer cell lines such as HeLa, SiHa, CaSki, C33 and HT3 compared to primary keratinocytes. The immunofluorescence technique under confocal microscopy shows that VHR has a cytoplasmic localization in primary keratinocytes, while it localizes in both cytoplasm and nucleus of the cancer cell lines investigated. We report that the up-regulation of this phosphatase is mainly due to its post-translational stabilization in the cancer cell lines compared to primary keratinocytes rather than increases in the transcription of DUSP3 locus. CONCLUSION: These results together suggest that VHR can be considered as a new marker for cancer progression in cervix carcinoma and potential new target for anticancer therapy

    Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European children and adolescents

    Get PDF
    Background Childhood obesity is a complex multifaceted condition, which is influenced by genetics, environmental factors, and their interaction. However, these interactions have mainly been studied in twin studies and evidence from population-based cohorts is limited. Here, we analyze the interaction of an obesity-related genome-wide polygenic risk score (PRS) with sociodemographic and lifestyle factors for BMI and waist circumference (WC) in European children and adolescents. Methods The analyses are based on 8609 repeated observations from 3098 participants aged 2-16 years from the IDEFICS/I.Family cohort. A genome-wide polygenic risk score (PRS) was calculated using summary statistics from independent genome-wide association studies of BMI. Associations were estimated using generalized linear mixed models adjusted for sex, age, region of residence, parental education, dietary intake, relatedness, and population stratification. Results The PRS was associated with BMI (beta estimate [95% confidence interval (95%-CI)] = 0.33 [0.30, 0.37], r(2) = 0.11, p value = 7.9 x 10(-81)) and WC (beta [95%-CI] = 0.36 [0.32, 0.40], r(2) = 0.09, p value = 1.8 x 10(-71)). We observed significant interactions with demographic and lifestyle factors for BMI as well as WC. Children from Southern Europe showed increased genetic liability to obesity (BMI: beta [95%-CI] = 0.40 [0.34, 0.45]) in comparison to children from central Europe (beta [95%-CI] = 0.29 [0.23, 0.34]), p-interaction = 0.0066). Children of parents with a low level of education showed an increased genetic liability to obesity (BMI: beta [95%-CI] = 0.48 [0.38, 0.59]) in comparison to children of parents with a high level of education (beta [95%-CI] = 0.30 [0.26, 0.34]), p-interaction = 0.0012). Furthermore, the genetic liability to obesity was attenuated by a higher intake of fiber (BMI: beta [95%-CI] interaction = -0.02 [-0.04,-0.01]) and shorter screen times (beta [95%-CI] interaction = 0.02 [0.00, 0.03]). Conclusions Our results highlight that a healthy childhood environment might partly offset a genetic predisposition to obesity during childhood and adolescence.Peer reviewe

    The FERM and PDZ Domain-Containing Protein Tyrosine Phosphatases, PTPN4 and PTPN3, Are Both Dispensable for T Cell Receptor Signal Transduction

    Get PDF
    PTPN3 and PTPN4 are two closely-related non-receptor protein tyrosine phosphatases (PTP) that, in addition to a PTP domain, contain FERM (Band 4.1, Ezrin, Radixin, and Moesin) and PDZ (PSD-95, Dlg, ZO-1) domains. Both PTP have been implicated as negative-regulators of early signal transduction through the T cell antigen receptor (TCR), acting to dephosphorylate the TCRζ chain, a component of the TCR complex. Previously, we reported upon the production and characterization of PTPN3-deficient mice which show normal TCR signal transduction and T cell function. To address if the lack of a T cell phenotype in PTPN3-deficient mice can be explained by functional redundancy of PTPN3 with PTPN4, we generated PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. As in PTPN3 mutants, T cell development and homeostasis and TCR-induced cytokine synthesis and proliferation were found to be normal in PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. PTPN13 is another FERM and PDZ domain-containing non-receptor PTP that is distantly-related to PTPN3 and PTPN4 and which has been shown to function as a negative-regulator of T helper-1 (Th1) and Th2 differentiation. Therefore, to determine if PTPN13 might compensate for the loss of PTPN3 and PTPN4 in T cells, we generated mice that lack functional forms of all three PTP. T cells from triple-mutant mice developed normally and showed normal cytokine secretion and proliferative responses to TCR stimulation. Furthermore, T cell differentiation along the Th1, Th2 and Th17 lineages was largely unaffected in triple-mutants. We conclude that PTPN3 and PTPN4 are dispensable for TCR signal transduction

    Characterization of New Substrates Targeted By Yersinia Tyrosine Phosphatase YopH

    Get PDF
    YopH is an exceptionally active tyrosine phosphatase that is essential for virulence of Yersinia pestis, the bacterium causing plague. YopH breaks down signal transduction mechanisms in immune cells and inhibits the immune response. Only a few substrates for YopH have been characterized so far, for instance p130Cas and Fyb, but in view of YopH potency and the great number of proteins involved in signalling pathways it is quite likely that more proteins are substrates of this phosphatase. In this respect, we show here YopH interaction with several proteins not shown before, such as Gab1, Gab2, p85, and Vav and analyse the domains of YopH involved in these interactions. Furthermore, we show that Gab1, Gab2 and Vav are not dephosphorylated by YopH, in contrast to Fyb, Lck, or p85, which are readily dephosphorylated by the phosphatase. These data suggests that YopH might exert its actions by interacting with adaptors involved in signal transduction pathways, what allows the phosphatase to reach and dephosphorylate its susbstrates

    The common FTO variant rs9939609 is not associated with BMI in a longitudinal study on a cohort of Swedish men born 1920-1924

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common FTO (fat mass and obesity associated) gene variants have recently been strongly associated with body mass index and obesity in several large studies. Here we set out to examine the association of the <it>FTO </it>variant rs9939609 with BMI in a 32 year follow up study of men born 1920-1924. Moreover, we analyzed the effect of physical activity on the different genotypes.</p> <p>Methods</p> <p>The <it>FTO </it>rs9936609 was genotyped using an Illumina golden gate assay. BMI was calculated using standard methods and body fat was estimated by measuring skinfold thickness using a Harpenden caliper. Physical activity was assessed using a four question medical questionnaire.</p> <p>Results</p> <p><it>FTO </it>rs9939609 was genotyped in 1153 elderly Swedish men taking part of a population-based cohort study, the ULSAM cohort. The risk of obesity and differences in BMI according to genotype at the ages of 50, 60, 70, 77 and 82 were investigated. We found no increased risk of obesity and no association with BMI at any age with the <it>FTO </it>rs9939609 variant. We found however interaction between physical activity at the age of 50 years and genotype on BMI levels (p = 0.039) and there was a clear trend towards larger BMI differences between the TT and AA carriers as well as between AT and AA carriers in the less physically active subjects.</p> <p>Conclusion</p> <p>Here we found that the well established obesity risk allele for a common variant in <it>FTO </it>does not associate with increased BMI levels in a Swedish population of adult men which reached adulthood before the appearance of today's obesogenic enviroment. There is an interaction between physical activity and the effect of the FTO genotype on BMI levels suggesting that lack of physical activity is a requirement for an association of FTO gene variants to obesity.</p

    Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To get insight into molecular mechanisms underlying insulin resistance, we compared acute in vivo effects of insulin on adipose tissue transcriptional profiles between obese insulin-resistant and lean insulin-sensitive women.</p> <p>Methods</p> <p>Subcutaneous adipose tissue biopsies were obtained before and after 3 and 6 hours of intravenously maintained euglycemic hyperinsulinemia from 9 insulin-resistant and 11 insulin-sensitive females. Gene expression was measured using Affymetrix HG U133 Plus 2 microarrays and qRT-PCR. Microarray data and pathway analyses were performed with Chipster v1.4.2 and by using in-house developed nonparametric pathway analysis software.</p> <p>Results</p> <p>The most prominent difference in gene expression of the insulin-resistant group during hyperinsulinemia was reduced transcription of nuclear genes involved in mitochondrial respiration (mitochondrial respiratory chain, GO:0001934). Inflammatory pathways with complement components (inflammatory response, GO:0006954) and cytokines (chemotaxis, GO:0042330) were strongly up-regulated in insulin-resistant as compared to insulin-sensitive subjects both before and during hyperinsulinemia. Furthermore, differences were observed in genes contributing to fatty acid, cholesterol and triglyceride metabolism (FATP2, ELOVL6, PNPLA3, SREBF1) and in genes involved in regulating lipolysis (ANGPTL4) between the insulin-resistant and -sensitive subjects especially during hyperinsulinemia.</p> <p>Conclusions</p> <p>The major finding of this study was lower expression of mitochondrial respiratory pathway and defective induction of lipid metabolism pathways by insulin in insulin-resistant subjects. Moreover, the study reveals several novel genes whose aberrant regulation is associated with the obese insulin-resistant phenotype.</p

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge
    corecore