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Abstract

Background Childhood obesity is a complex multifaceted condition, which is influenced by genetics, environmental factors,
and their interaction. However, these interactions have mainly been studied in twin studies and evidence from population-
based cohorts is limited. Here, we analyze the interaction of an obesity-related genome-wide polygenic risk score (PRS) with
sociodemographic and lifestyle factors for BMI and waist circumference (WC) in European children and adolescents.
Methods The analyses are based on 8609 repeated observations from 3098 participants aged 2—16 years from the IDEFICS/
IL.Family cohort. A genome-wide polygenic risk score (PRS) was calculated using summary statistics from independent
genome-wide association studies of BMI. Associations were estimated using generalized linear mixed models adjusted for
sex, age, region of residence, parental education, dietary intake, relatedness, and population stratification.

Results The PRS was associated with BMI (beta estimate [95% confidence interval (95%—CI)] = 0.33 [0.30, 0.37], =
0.11, p value = 7.9 x 10~%") and WC (beta [95%—CI] = 0.36 [0.32, 0.40], * =0.09, p value = 1.8 x 10~"!). We observed
significant interactions with demographic and lifestyle factors for BMI as well as WC. Children from Southern Europe
showed increased genetic liability to obesity (BMI: beta [95%—CI] = 0.40 [0.34, 0.45]) in comparison to children from
central Europe (beta [95%—CI] =0.29 [0.23, 0.34]), p-interaction = 0.0066). Children of parents with a low level of
education showed an increased genetic liability to obesity (BMI: beta [95%—CI] = 0.48 [0.38, 0.59]) in comparison to
children of parents with a high level of education (beta [95%—CI] = 0.30 [0.26, 0.34]), p-interaction = 0.0012). Further-
more, the genetic liability to obesity was attenuated by a higher intake of fiber (BMI: beta [95%—CI] interaction = —0.02
[—0.04,—0.01]) and shorter screen times (beta [95%—CI] interaction = 0.02 [0.00, 0.03]).

Conclusions Our results highlight that a healthy childhood environment might partly offset a genetic predisposition to
obesity during childhood and adolescence.

Introduction decades most likely due to adverse changes of environ-
mental and demographic factors [1]. Studies in twins have
suggested that genetic factors explain ~40-80% of the
variation in obesity susceptibility [2]. Twin studies have
further suggested that obesity-predisposing genes are not
deterministic, but they rather interact with a variety of
environmental and lifestyle factors. In particular, the herit-
ability of BMI has been shown to be higher among children

living in obesogenic home environments [3-6], children

Obesity is a complex multifaceted condition and its pre-
valence has been increasing continuously over previous
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whose parents have lower education levels [7] and young
adults with a sedentary lifestyle [8, 9]. An alternative to the
traditional twin study design is genome-wide associations
studies (GWAS), which have revolutionized the field of
complex disease genetics over the past decade, providing
numerous compelling associations for obesity [10, 11] and
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other human complex traits and diseases [12]. GWAS have
identified 751 genetic variants (single-nucleotide poly-
morphisms (SNPs)) in association with BMI [10, 11] and a
subset of them has been used in gene—environment (GXE)
interaction analyses to show that the genetic predisposition
to obesity is attenuated by a healthy lifestyle including
physical activity [13, 14] and adherence to healthy dietary
patterns [14-20]. However, these genome-wide significant
variants only account for a small portion of BMI variation
(up to 6%) [10, 11], while genome-wide estimates suggest
that common variation accounts for >20% of BMI variation
[10]. Therefore, the polygenic nature of BMI is not reflected
in the current literature of BMI-related GXE interactions,
which could have decreased the statistical power to detect
interactions. Khera et al. suggest that the power to predict
BMI can be improved by using polygenic risk scores
(PRSs) that include SNPs that do not reach the threshold for
genome-wide significance and by using genome-wide
approaches [21]. We hypothesize that using a PRS that
captures the polygenic nature of BMI will enable us to
validate the interactions that were found in twin studies
[3-9] and possibly detect new GxE interactions that have
not been found by previous studies.

Another gap in knowledge is that most previous
GxE interaction studies primarily involved adults [8, 9,
13-20, 22, 23], so that little is known whether the inherited
susceptibility to obesity is modified by environmental fac-
tors already during childhood and adolescence. Given that
the weight trajectories of individuals in different PRS dec-
iles start to diverge in early childhood [21], the identifica-
tion of robust GXE interactions in children is particularly
important to facilitate targeted strategies for obesity pre-
vention early in life.

In this study, we will calculate the most recent PRS for
BMI [21] and (1) show the variance explained by the PRS
for BMI as well as for waist circumference of European
children and adolescents and (2) analyze its interaction with
parental education, region of residence, selected dietary
variables, and physical activity to investigate to which
degree the inherited susceptibility to obesity in children is
modified by these sociodemographic and lifestyle factors.
The analyses are based on 8609 repeated observations from
3098 children and adolescents aged 2—16 years from the
pan-European IDEFICS/I.Family cohort.

Methods
Study population
The pan-European IDEFICS/I.Family cohort [24, 25] is a

multi-center, prospective study on the association of social,
environmental, and behavioral factors with children’s health
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status. Children were recruited through kindergarten or
school settings in Belgium, Cyprus, Estonia, Germany,
Hungary, Italy, Spain, and Sweden. In 2007/2008, 16,229
children aged between 2 and 9.9 years participated in the
baseline survey. Follow-up surveys were conducted after 2
(FU1, N = 11,043 plus 2543 newcomers) and 6 years (FU2,
N=T117 plus 2512 newly recruited siblings). Ques-
tionnaires were completed by parents. In the second follow-
up (FU2), adolescents of 12 years of age or older reported
for themselves. The study was conducted in agreement
with the Declaration of Helsinki; all procedures were
approved by the local ethics committees and written and
oral informed consents were obtained. Children were
selected for a whole-genome scan based on their partici-
pation in the individual study modules. Children from
Cyprus were not included in this initial genotyping to
minimize population stratification.

Assessment of BMI and waist circumference

BMI was calculated as weight divided by height squared [kg/
m?]. Height was measured to the nearest 0.1 cm by a SECA
225 Stadiometer (Seca GmbH & Co. KG., Hamburg, Ger-
many) and body weight was measured in fasting state in light
underwear on a calibrated scale accurate to 0.1 kg by a Tanita
BC 420 SMA scale (TANITA, Tokyo, Japan). Waist cir-
cumference was measured in upright position with relaxed
abdomen and feet together using an inelastic tape (Seca 200,
Birmingham, UK), precision 0.1 cm, midway between the
iliac crest and the lowest rib margin to the nearest 0.1 cm
[26]. Age- and sex-specific BMI and waist circumference z-
scores for children and adolescents were calculated using
reference data from the International Obesity Task Force [27]
and from British children [28], respectively. In addition, we
proceeded as follows to dichotomize BMI and waist cir-
cumference (binary outcomes): As recommended by the
International Obesity Task Force [27], we used age- and sex-
specific cutoff values for obesity based on the raw BMI
values, e.g., 6.0-year-old boys and girls with a BMI of at
least 19.76 and 19.62 were considered as obese, respectively.
The age- and sex-specific cutoff values for waist cir-
cumference were based on the top quartile of the reference
data from the National Health and Nutrition Examination
Survey [29], e.g., 6.0 year old boys and girls with a waist
circumference of at least 58.3 and 57.2 cm were in the top
quartile of waist circumference, respectively.

Genotyping and quality control

DNA was extracted from saliva or blood samples using
established procedures. Genotyping of 3515 children was
performed on the UK Biobank Axiom array (Santa Clara,
USA) in two batches (2015 and 2017). Following the
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Table 1 Study characteristics of the 8609 repeated observations from
3098 children.

Baseline First follow-up Second follow-up
(FU1D) (FU2)
n 3016 2937 2656
Age (years)
Mean (SD) 6.19 (1.77) 8.12 (1.80) 11.75 (1.83)
Median (IQR) 6.60 (3.10) 8.50 (3.20) 11.90 (3.20)
Range 2.0-9.7 3.4-11.9 6.6-16.2
Sex
Female (%) 1510 (50.07) 1472 (50.12) 1331 (50.11)
Male (%) 1506 (49.93) 1465 (49.88) 1325 (49.89)
Parental education
Low (%) 180 (5.97) 166 (5.65) 156 (5.87)
Medium (%) 1337 (44.33) 1204 (40.99) 1172 (44.13)
High (%) 1463 (48.51) 1476 (50.26) 1310 (49.32)

Missing 36 91 18
European region of residence
Central (%) 1250 (41.45)

1218 (41.47) 1114 (41.94)

North (%) 743 (24.64) 721 (24.55) 682 (25.68)
South (%) 1023 (33.92) 998 (33.98) 860 (32.38)

Fruit and vegetable score (%)
Mean (SD) 14.66 (7.49) 15.39 (7.99) 14.68 (7.83)
Median (IQR) 13.80 (9.58) 14.68 (10.24) 13.68 (9.66)
Range 0.00-57.14 0.00-58.33 0.00-60.71
Missing 58 154 106

Fiber intake (mg/kcal)
Mean (SD) 8.17 (1.31) 8.23 (0.90) 8.22 (1.27)
Median (IQR) 8.13 (1.79) 8.13 (1.48) 8.07 (1.61)
Range 3.87-15.76 5.76-11.56 4.74-13.89
Missing 826 1100 660

MVPA (h/day)
Mean (SD) 0.67 (0.36) 0.67 (0.36) 0.64 (0.37)
Median (IQR) 0.61 (0.46) 0.62 (0.47) 0.57 (0.47)
Range 0.02-2.29 0.03-2.74 0.00-2.42
Missing 1240 1297 871

Screen time (h/day)
Mean (SD) 1.60 (1.00) 1.89 (1.08) 2.34 (1.50)
Median (IQR) 1.50 (1.07) 1.75 (1.43) 2.02 (1.79)
Range 0.00-8.00 0.00-8.00 0.00-8.00
Missing 93 132 150

BMI z-scores
Mean (SD) 0.34 (1.16) 0.41 (1.18) 0.51 (1.12)
Median (IQR) 0.23 (1.48) 0.32 (1.67) 0.45 (1.62)
Range —5.42-5.80 —5.76-4.65 —2.96-3.83
Obese (%) 204 (6.76) 214 (7.29) 179 (6.74)

Waist circumference z-scores
Mean (SD) 0.24 (1.45) 0.59 (1.29) 0.78 (1.25)
Median (IQR) 0.16 (1.61) 0.46 (1.72) 0.71 (1.77)
Range —27.98-5.65 —6.79-5.33 —7.75-4.38
Top quartile (%) 461 (15.29) 443 (15.08) 316 (11.90)
Missing 76 22 55

Z-scores for BMI and waist circumference were calculated according
to refs. [27, 28]. Obesity was defined according to the extended IOTF
criteria [27].

recommendations of ref. [30], sample and genotype quality
control measures were applied (see Supplementary materials
for details), resulting in 3099 children and 3424,677 genotypes

after imputation. A genetic relatedness matrix was calculated
by using the program EMMAX (https://genome.sph.umich.
edu/wiki/EMMAX) to account for the degree of relatedness
within the study sample and to adjust for population stratifi-
cation [31, 32] (see “Statistical analyses”).

Polygenic risk score calculation

We calculated PRS based on genome-wide summary sta-
tistics for BMI from European ancestry populations. The
PRS (called PRS-Khera) was proposed and validated in
Khera et al. [21]. It consists of 2,100,302 SNPs and is based
on summary statistics from the first large-scale GWAS of
BMI (~300,000 samples) [10]. PRS-Khera was calculated in
Khera et al. [21] using a computational algorithm called
LDPred, which is a Bayesian approach to calculate a pos-
terior mean effect for all variants using external weights
with subsequent shrinkage based on linkage disequilibrium
[33]. Using LDPred, each variant was reweighted according
to the prior GWAS [10], the degree of correlation between a
variant and others nearby, and a tuning parameter that
denotes the proportion of variants with non-zero effect.

In sensitivity analyses, the performance of PRS-Khera
was compared to PRS calculated with PRSice [34] and PRS
based on only genome-wide significant SNPs from two
discovery samples (same discovery sample as for PRS-
Khera (~300,000 samples) [10] and the largest published
GWAS study of BMI to date (~700,000 samples) [11]).
More details on the different PRS are given in the Sup-
plementary methods and Figs. S1-S3.

Assessment of dietary intake

We used long-term and short-term dietary measurements
assessed by food frequency questionnaires (FFQs) and
repeated 24-h dietary recalls, respectively [35]. A fruit and
vegetable score was calculated from FFQs (for more details
on the FFQs and calculation of the fruit and vegetable
score, see Supplementary material). We expressed the fruit
and vegetable consumption as the relative frequency in
relation to all foods reported in the FFQs [36]. Energy and
dietary fiber intake was assessed by repeated 24-h dietary
recalls in a subset of the IDEFICS/I.Family cohort (see
Table 1 for the actual numbers) [37, 38]. Fiber intake was
expressed in relation to total energy intake in mg/kcal. See
Supplementary material for more details.

Assessment of physical activity
Physical activity was objectively measured by using Acti-
graph’s uniaxial or three-axial accelerometers [39, 40]. At

baseline and FU1, children were asked to wear the accel-
erometer for 3 days (including 1 weekend day) and at FU2

SPRINGER NATURE
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for a full week during waking hours (except when swim-
ming or showering). The daily average cumulative duration
of time spent performing moderate-to-vigorous physical
activity (MVPA) was expressed as hours per day according
to the cutoff value by Evenson et al. [41]. Time spent in
MVPA is based on cleaned accelerometer data that only
contain measurements that have passed the minimum wear
time criteria of at least 3 measurement days and at least
360 min of valid time per day. The accelerometers were
attached to the right hip with an elastic belt. See Supple-
mentary material for more details.

Assessment of screen time

Screen time was assessed by asking how many hours
per day the child/adolescent usually spends watching tele-
vision (including videos or DVDs) and by another question
on the time sitting in front of a computer and game console
[42, 43]. Responses were weighted and summed across
weekdays and weekend days and the quantified frequencies
from both questions were added to create a continuous
variable of total screen time in hours per day. See Supple-
mentary material for more details.

Assessment of sociodemographic variables

Parental education was retrieved from questionnaires and
coded according to the International Standard Classification of
Education (ISCED) [44]. For the analyses, the highest parental
education of both parents was coded as low (ISCED Ilevels 1
and 2; <9 years of education), medium (ISCED levels 3 and
4), and high (ISCED levels 5 and 6; >2 years of education
after high school). The region of residence was coded as
Northern Europe (Estonia, Sweden), Central Europe (Belgium,
Germany, and Hungary), and Southern Europe (Italy, Spain).

Statistical analyses

Our data consist of up to three repeated measurements of
individuals, some of whom were siblings. We estimated
associations between the PRS and obesity outcomes (BMI
and waist circumference) as well as interactions between the
PRS and demographic and lifestyle factors using general-
ized linear mixed models where the covariance matrix of the
random intercept is proportional to a genetic relatedness
matrix. We applied the generalized linear mixed model
approach of Chen et al. [31] that jointly controls for relat-
edness and population stratification. Such a model can be
formulated in slightly simplified notation as:

8(EY) =Xp+y

y ~N(0,V),

SPRINGER NATURE

where g() is the link function, E() the expectation, y is the
dependent variable, X the covariate matrix, § a vector of the
fixed effects, and y the intercept-only random effect, which is
assumed to be normally distributed with expectation 0 and
covariance according to the genetic relatedness matrix V.

In addition, we conducted the following analyses for the
main effects of the PRS for easier interpretation and com-
parison with the results from Khera et al. [21]. (1) We used
logistic mixed models (logit link) to estimate associations
between the PRS and obesity and the top quartile of waist
circumference (binary outcomes) and (2) we estimated
associations between being in the top decile of the PRS
(binary variable) and the obesity outcomes.

All models were adjusted for confounding factors that
are assumed to be associated with lifestyle and obesity (sex,
age, region of residence, parental education, and dietary
intake (fruit and vegetable score as proxy for healthy diet-
ary intake)). Models that investigated the interaction
between PRS and fiber intake were not additionally adjus-
ted for the fruit and vegetable score because both variables
are used as proxy variables for healthy dietary intake. The
response and confounding variables showed only small
percentage of missing values while we had more missing
values of some exposure variables such as fiber intake and
MVPA (Table 1). We compared BMI and waist cir-
cumference of children with and without missing values in
exposure variables (fiber, fruit and vegetable score, MVPA,
screen time) to evaluate if they were missing at random. As
we conducted a repeated measurement analysis, we retained
all children in the analysis that had at least one observed
measurement of each variable and performed listwise
deletion of incomplete cases. When testing associations
with categorical variables (sex, region of residence, and
parental education), we used the category with the largest
sample size as reference category.

All p values from the GxE interaction analyses were
adjusted according to the number of tested environmental
factors using the false-discovery rate (FDR, FDR-adjusted
p values are called g values). We reported 95% CI and
two-sided p values, and considered p values <0.05 statis-
tically significant. We used R 3.5.1 [45] for all statistical
analyses.

Results
Study description

The study sample included 8609 repeated BMI measure-
ments from at maximum three time points (baseline, FU1,
FU2) of 3098 children aged 2—-16 years (Table 1). The
number of participants decreased between the follow-up
investigations from n = 3016 at baseline (mean age 6 years)



Polygenic risk for obesity and its interaction with lifestyle and sociodemographic factors in European... 1325
Table 2 Associations of PRS-Khera with BMI, obesity, and waist circumference in IDEFICS/I.Family.
(A) BMI

BMI Obesity
Scale of PRS Est., 95% CI p value R? OR, 95% CI p value AUC
Continuous 0.33 [0.30, 0.37] 7.9¢ — 81 0.108 2.33 [2.01, 2.70] 2.0e —29 0.736
Top decile 0.61 [0.49, 0.73] S5.4e —24 0.036 3.63 [2.57, 5.14] 2.7e—13 0.598
(B) Waist circumference

Waist circumference Waist top quartile
Scale of PRS Est., 95% CI p value R? OR, 95% CI p value AUC
Continuous 0.36 [0.32, 0.40] 1.8e —71 0.088 1.97 [1.78, 2.17] 1.5¢ — 40 0.683
Top decile 0.69 [0.55, 0.82] 8.8 —24 0.032 3.09 [2.37, 4.03] 6.1e — 17 0.569

Associations adjusted for region of residence, sex, age, parental education, fruit and vegetable score. Z scores for BMI and waist circumference
were calculated according to refs. [27, 28]. Obesity was defined according to the extended IOTF criteria [27].

to n=2656 at FU2 (mean age 12 years). Half of the chil-
dren were girls, most children came from families with a
medium or high level of parental education and the majority
lived in Central European countries. The distributions of the
dietary variables (fruit and vegetable score and fiber intake)
and time spent in MVPA were similar between baseline and
the two follow-up samples, whereas children and adoles-
cents spent more time in front of screens at FU1 and FU2 as
compared to baseline. For the variables with the most
missing values (MVPA, fiber intake, the fruit and vegetable
score, and screen time), we observed at least one of three
repeated measurements for 90%, 95%, >99%, and >99% of
the children, respectively. We found no substantial differ-
ences between children with no measurements at any visit
and children with at least one observed measurement with
BMI, waist circumference, and the PRS score (see Fig. S4).

Variance explained by PRS

We found that the PRS-Khera provided the best prediction of
BMI (##=0.11) and the second-best prediction of obesity
(AUC =0.74, see Table S1 for details on the characteristics of
the other PRS). PRS-Khera was associated with BMI (* =
0.11, p value=7.9x 10781) and waist circumference (12 =
0.09, 1.8 x 10~ in our study population (Table 2) and these
correlations increased with age (see Tables S2, S3 and Fig. S5).
Being in the top decile of the distribution of PRS-Khera was
associated with 3.63 times higher odds for obesity (95% CI:
[2.57, 5.14]) and with 3.09 (95% CI: [2.37, 4.03]) higher odds
for being in the top quartile of waist circumference.

GXE interactions

We found a significant GXE interaction of PRS-Khera with
parental education (low vs. high) as well as with the

European region of residence (Central vs. Southern) for
BMI as well as for waist circumference (Fig. 1 and Table
S4). Children and adolescents from families with a low
level of parental education were at a higher risk of having
obesity among those with higher genetic susceptibility than
children from families with a high level of parental educa-
tion (low: beta estimate from education-stratified analysis
for association between PRS-Khera and BMI = 0.48; 95%
CI: [0.38, 0.59], high: beta estimate = 0.30; 95% CI: [0.26,
0.34], g value interaction = 0.0106, Fig. 1 and Table S4).
Furthermore, children and adolescents from Southern Eur-
opean countries showed an increased genetic susceptibility
to a high BMI in comparison to children and adolescents
from Central Europe (Central Europeans: beta estimate from
region-stratified analysis for association between PRS-
Khera and BMI=0.29; 95% CI: [0.23, 0.34], Southern
Europeans: beta estimate =0.40; 95% CI: [0.34, 0.45],
g value interaction = 0.0246, Fig. 1 and Table S4). Inter-
actions were confirmed in our sensitivity analyses using
other genome-wide PRS (Fig. S6 and Table S6). We did not
find significant interactions between PRS-Khera and sex,
the comparison of low vs. medium parental education, nor
the comparison of Central vs. Northern European region of
residence (Fig. 1 and Table S4).

The genetic susceptibility to a high BMI was further
modified by intake of dietary fiber and screen time (Fig. 2
and Table S5). Children and adolescents with a higher
fiber intake showed an attenuated risk of having obesity
despite their genetic susceptibility (BMI: beta estimates
and 95% CI for interaction terms: —0.02 [—0.04, —0.01],
g values interaction = 0.025; waist circumference: —0.03
[—0.06, —0.01], g values interaction = 0.023). Furthermore,
the more time the children and adolescents spent in front of
screens, the higher was their risk of having obesity among
those with higher genetic susceptibility (significant for

SPRINGER NATURE
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A) BMI (n = 8223)
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Fig. 1 Interactions between PRS-Khera and sociodemographic
factors on BMI and waist circumference. Associations between PRS
and BMI/waist circumference are shown in different strata (beta esti-
mates and 95% Cls) as well as in the whole study population (red line).
Raw p values (p) and FDR-adjusted p values (g values, g) are given for

BMI: beta estimates and 95% CI for interaction terms: 0.02
[0.00, 0.03], g value interaction =0.042). Interactions
between PRS-Khera and the fruit and vegetable score or
MVPA were not significant (beta estimates and 95% CI for
interaction terms: —0.01 [—0.21, 0.19] for fruit and vege-
table score and —0.01 [—0.07, 0.04] for MVPA). Interaction
results with other PRS for obesity were similar, but not
significant (Fig. S7 and Table S7).

Discussion

In our pan-European cohort of children aged 2—16 years, we
found significant interactions between PRS-Khera and
sociodemographic as well as lifestyle factors for BMI and
waist circumference: we observed GxE interactions with (1)
the European region of residence, which most likely reflect
cultural lifestyle differences, (2) parental education, (3)
dietary fiber intake, and (4) the time children spent in front

SPRINGER NATURE

the test of deviations of the association between PRS and obesity in
one subgroup in comparison to the reference category (interaction).
The category without p values is the reference category. The gray
boxes show the distribution of the sociodemographic factors.

of screens. Of note, all of these interactions would have
remained undetected in this sample of children when only
focusing on genome-wide significant variants as was done
in previous studies (compare Figs. S6 and S7) [13-20].

Comparison with previous studies

Interactions with socioeconomic status [7, 14], physical
activity [8, 9, 13, 14], and dietary factors [14—16] have been
reported previously. However, previous interaction results
were mainly estimated in twin studies, which might not be
representative of the general population [46], and cohort
studies including only <100 genome-wide significant SNPs,
which do not account for the polygenic nature of BMI [21].
Thus, our study confirms previous interaction findings
and demonstrates that genome-wide PRSs are a powerful
approach to detect interactions and a good alternative to
the traditional twin study design. Genome-wide PRSs have
the advantage that they can be applied to cohort studies,
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Fig. 2 Interactions between PRS-Khera and lifestyle factors on
BMI and waist circumference. Associations between PRS and obe-
sity are shown in dependence of the PRS (beta estimates and 95% Cls)
as well as in the whole study population (red line). The distributions of

while explaining a much larger part of the genetic variance
of BMI than studies restricted to genome-wide significant
variants. In addition, previous GXE interaction studies were
mainly based on adult populations whereas in our study we
analyzed data from children and adolescents aged 2-16
years, i.e., in the key developmental transition phases of
human life.

We identified children from families with low level of
parental education as being about 61% more susceptible to
the polygenic burden of obesity than children from families
with a high level of parental education. In addition, we found
that children from Southern Europe had a higher genetic
susceptibility to obesity in comparison to children from
Central Europe. Parental education and region of residence
reflect a variety of social and cultural differences and many
of them are difficult to be captured by questionnaires. Since a
previous analysis of the same cohort showed that low par-
ental education was associated with higher intakes of
unhealthy food among children, e.g., sugar-rich and fatty
foods [47, 48], part of the effect modification might be due to
dietary habits. The differences in the risk of having obesity
among children with a higher genetic susceptibility across
different European regions might be explained by differences
in dietary or cultural habits [49, 50].

Furthermore, we found an interaction between PRS-
Khera and dietary fiber intake, where children with a higher

the lifestyle factors are shown in histograms. Raw p values (p) and
FDR-adjusted p values (g values, ¢) are given for the interaction terms.
The distributions of the lifestyle factors are shown in histograms.

intake of fiber have a reduced risk for obesity despite their
genetic susceptibility. This finding is in line with many
other studies that have shown that a healthy diet can
attenuate the genetic burden of obesity [14-20].

Interactions between PRS-Khera and physical activity
(MVPA) were not significant, but the direction of interac-
tion effect was in line with previous studies [13, 14]. An
explanation for this might be that MVPA was only assessed
in ~40% of our analysis group (Table 1), which reduced the
statistical power to detect interactions between MVPA
and PRS.

Strengths and limitations of this study

Important strengths of this study include: detailed and repe-
ated phenotyping of participants in this cohort with partly
objective measures (MVPA), inclusion of thousands of
children from diverse regions in Europe and the longitudinal
approach across key developmental periods [25]. Dietary
assessment in children is a challenging task, and different
dietary assessment methods have different strengths and
limitations. We used two different methods—a fruit and
vegetable score derived from FFQs and fiber intake calcu-
lated from the more detailed 24-h dietary recalls. The har-
monized protocol in all countries that was enforced by a
central quality control and a central data management ensures
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comparability of measurements across study centers. Another
major strength of our study is the application of genome-
wide PRS for obesity, which has an almost five times higher
prediction accuracy than previously used PRS [14-20] and
with which we identified interactions that would have
remained undetected when restricting to only genome-wide
significant variants (compare Figs. S5 and S6). In addition,
although the PRS-Khera was derived for BMI we also
assessed its association with waist circumference. The
strength of this association was only slightly smaller than the
association with BMI. This is plausible, because PRS-Khera
is known to be a strong risk factor for severe obesity and
associated health outcomes [21].

A limitation of our study is that measurement errors of
self-reported lifestyle behaviors are inevitable. However,
measurement error in environmental exposure typically
biases the interaction effect toward the null [51], which does
not increase the risk for false-positive findings but reduces
the statistical power to detect modest interactions. In addi-
tion, we used a complete-case analysis strategy, which
might bias the estimates toward null [52].

Conclusions

Our study showed significant interactions between the
polygenic risk for an increased BMI and sociodemographic
and lifestyle factors that affect BMI as well as waist cir-
cumference. Among children with a high genetic risk, we
identified children from Southern Europe, children from
families with a low level of parental education, children
with a low dietary fiber intake and children who spend more
time in front of screens as being particularly susceptible to
obesity. These results suggest that the risk for obesity
among children with a high genetic susceptibility varies by
environmental and sociodemographic factors during child-
hood. While all children benefit from an environment that
supports a healthy lifestyle, our findings suggest that this is
particularly important for children with a high genetic risk
for obesity. Although it is unlikely that genetic screening for
obesity will be implemented in clinical practice anytime
soon, our findings emphasize the importance of obesity
prevention in early childhood by showing that there are
synergistic effects of genetics and sociodemographic and
lifestyle factors that could affect a substantial part of the
general population. The interactions between parental edu-
cation, region, and genetic heritability indicate that system-
level interventions might be better suited than individual
intervention strategies.
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