58 research outputs found

    Tracking cyclones in regional model data: the future of Mediterranean storms

    Get PDF
    With the advent of regional climate modelling, there are high-resolution data available for regional climatological change studies. Automatic tracking of cyclones in these datasets encounters problems with high spatial resolution due to cyclone substructure. Watershed segmentation, a technique from image analysis, has been used to obtain estimates for the spatial extent of cyclones, enabling better tracking and precipitation analysis. In this study we have used data from a 0.5° Regional Model (REMO) climatological model run for the period from 1961-2099, following the International Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) B2 forcing. The resulting hourly mean sea level pressure (MSLP) fields have been analysed for cyclone numbers and tracks in the Mediterranean region. According to the results, the total number of cyclones in the Mediterranean seems to be increasing in the future, in spite of a general decrease of the numbers of stronger systems. In Summer, the increase in each gridbox seems to be proportional to the total number of cyclones in that box, whereas in Winter there is a slight proportional decrease. As concerns track properties and precipitation estimates along tracks, no significant change could be detected

    Tracking cyclones in regional model data: the future of Mediterranean storms

    Get PDF
    With the advent of regional climate modelling, there are high-resolution data available for regional climatological change studies. Automatic tracking of cyclones in these datasets encounters problems with high spatial resolution due to cyclone substructure. Watershed segmentation, a technique from image analysis, has been used to obtain estimates for the spatial extent of cyclones, enabling better tracking and precipitation analysis. In this study we have used data from a 0.5 Regional Model (REMO) climatological model run for the period from 1961-2099, following the International Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) B2 forcing. The resulting hourly mean sea level pressure (MSLP) fields have been analysed for cyclone numbers and tracks in the Mediterranean region. According to the results, the total number of cyclones in the Mediterranean seems to be increasing in the future, in spite of a general decrease of the numbers of stronger systems. In Summer, the increase in each gridbox seems to be proportional to the total number of cyclones in that box, whereas in Winter there is a slight proportional decrease. As concerns track properties and precipitation estimates along tracks, no significant change could be detected

    Distance-based analysis of dynamical systems and time series by optimal transport

    Get PDF
    The concept of distance is a fundamental notion that forms a basis for the orientation in space. It is related to the scientific measurement process: quantitative measurements result in numerical values, and these can be immediately translated into distances. Vice versa, a set of mutual distances defines an abstract Euclidean space. Each system is thereby represented as a point, whose Euclidean distances approximate the original distances as close as possible. If the original distance measures interesting properties, these can be found back as interesting patterns in this space. This idea is applied to complex systems: The act of breathing, the structure and activity of the brain, and dynamical systems and time series in general. In all these situations, optimal transportation distances are used; these measure how much work is needed to transform one probability distribution into another. The reconstructed Euclidean space then permits to apply multivariate statistical methods. In particular, canonical discriminant analysis makes it possible to distinguish between distinct classes of systems, e.g., between healthy and diseased lungs. This offers new diagnostic perspectives in the assessment of lung and brain diseases, and also offers a new approach to numerical bifurcation analysis and to quantify synchronization in dynamical systems.LEI Universiteit LeidenNWO Computational Life Sciences, grant no. 635.100.006Analyse en stochastie

    Modeling and simulation of phase-transitions in multicomponent aluminum alloy casting

    Get PDF
    The casting process of aluminum products involves the spatial distribution of alloying elements. It is essential that these elements are uniformly distributed in order to guarantee reliable and consistent products. This requires a good understanding of the main physical mechanisms that affect the solidification, in particular the thermodynamic description and its coupling to the transport processes of heat and mass that take place. The continuum modeling is reviewed and methods for handling the thermodynamics component of multi-element alloys are proposed. Savings in data-storage and computing costs on the order of 100 or more appear possible, when a combination of data-reduction and data-representation methods is used. To test the new approach a simplified model was proposed and shown to qualitatively capture the evolving solidification front

    Key Performance Indicators for Wind Farm Operation and Maintenance

    Get PDF
    Key performance indicators (KPI) are tools for measuring the progress of a business towards its goals. Although wind energy is now a mature technology, there is a lack of well-defined best practices to asses the performance of a wind farm (WF) during the operation and maintenance (O&M) phase; processes and tools of asset management, such as KPIs, are not yet well-established. This paper presents a review of the major existing indicators used in the O&M of wind farms (WFs), as such information is not available in the literature so far. The different stakeholders involved in the O&M phase are identified and analysed together with their interests, grouped into five categories. A suggestion is made for the properties that KPIs should exhibit. For each category, major indicators that are currently in use are reviewed, discussed and verified against the properties defined. Finally, we propose a list of suitable KPIs that will allow stakeholders to have a better knowledge of an operating asset and make informed decisions. It is concluded that more detailed studies of specific KPIs and the issues of their implementation are probably needed

    Decoupled simulations of offshore wind turbines with reduced rotor loads and aerodynamic damping

    No full text
    Decoupled load simulations are a computationally efficient method to perform a dynamic analysis of an offshore wind turbine. Modelling the dynamic interactions between rotor and support structure, especially the damping caused by the rotating rotor, is of importance, since it influences the structural response significantly and has a major impact on estimating fatigue lifetime. Linear damping is usually used for this purpose, but experimentally and analytically derived formulas to calculate an aerodynamic damping ratio often show discrepancies to measurement and simulation data. In this study decoupled simulation methods with reduced and full rotor loads are compared to an integrated simulation. The accuracy of decoupled methods is evaluated and an optimization is performed to obtain aerodynamic damping ratios for different wind speeds that provide the best results with respect to variance and equivalent fatigue loads at distinct output locations. Results show that aerodynamic damping is not linear, but it is possible to match desired output using decoupled models. Moreover, damping ratios obtained from the empirical study suggest that aerodynamic damping increases for higher wind speeds
    • …
    corecore